These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19229556)

  • 1. Learning to reach by reinforcement learning using a receptive field based function approximation approach with continuous actions.
    Tamosiunaite M; Asfour T; Wörgötter F
    Biol Cybern; 2009 Mar; 100(3):249-60. PubMed ID: 19229556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Semantics to Execution: Integrating Action Planning With Reinforcement Learning for Robotic Causal Problem-Solving.
    Eppe M; Nguyen PDH; Wermter S
    Front Robot AI; 2019; 6():123. PubMed ID: 33501138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kernel dynamic policy programming: Applicable reinforcement learning to robot systems with high dimensional states.
    Cui Y; Matsubara T; Sugimoto K
    Neural Netw; 2017 Oct; 94():13-23. PubMed ID: 28732231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement Learning Approaches in Social Robotics.
    Akalin N; Loutfi A
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cognitively inspired reinforcement learning architecture and its application to giant-swing motion control.
    Uragami D; Takahashi T; Matsuo Y
    Biosystems; 2014 Feb; 116():1-9. PubMed ID: 24296286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Arm Robot Trajectory Planning Based on Deep Reinforcement Learning under Complex Environment.
    Tang W; Cheng C; Ai H; Chen L
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of continuum robot arms under reinforcement learning and derived improvements.
    Morimoto R; Ikeda M; Niiyama R; Kuniyoshi Y
    Front Robot AI; 2022; 9():895388. PubMed ID: 36119726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient exploration through active learning for value function approximation in reinforcement learning.
    Akiyama T; Hachiya H; Sugiyama M
    Neural Netw; 2010 Jun; 23(5):639-48. PubMed ID: 20080026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal tuning in a brain-machine interface during Reinforcement Learning.
    Mahmoudi B; Digiovanna J; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4491-4. PubMed ID: 19163713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A real-world application of Markov chain Monte Carlo method for Bayesian trajectory control of a robotic manipulator.
    Tavakol Aghaei V; Ağababaoğlu A; Yıldırım S; Onat A
    ISA Trans; 2022 Jun; 125():580-590. PubMed ID: 34148651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction.
    Kim SK; Kirchner EA; Stefes A; Kirchner F
    Sci Rep; 2017 Dec; 7(1):17562. PubMed ID: 29242555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering diverse solutions in deep reinforcement learning by maximizing state-action-based mutual information.
    Osa T; Tangkaratt V; Sugiyama M
    Neural Netw; 2022 Aug; 152():90-104. PubMed ID: 35523085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-assisted motor training: assistance decreases exploration during reinforcement learning.
    Sans-Muntadas A; Duarte JE; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3516-20. PubMed ID: 25570749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic Rewards for Maintenance, Approach, Avoidance, and Achievement Goal Types.
    Dhakan P; Merrick K; Rañó I; Siddique N
    Front Neurorobot; 2018; 12():63. PubMed ID: 30356820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stage-Wise Learning of Reaching Using Little Prior Knowledge.
    de La Bourdonnaye F; Teulière C; Triesch J; Chateau T
    Front Robot AI; 2018; 5():110. PubMed ID: 33500989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.