These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 1922968)

  • 1. Clustering of cell bodies, bundling of dendrites, and gap junctions: morphological substrate for electrical coupling in the prepacemaker nucleus.
    Zupanc GK
    Neurosci Lett; 1991 Aug; 129(1):29-34. PubMed ID: 1922968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The synaptic organization of the prepacemaker nucleus in weakly electric knifefish, Eigenmannia: a quantitative ultrastructural study.
    Zupanc GK
    J Neurocytol; 1991 Oct; 20(10):818-33. PubMed ID: 1783940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap junction protein in weakly electric fish (Gymnotide): immunohistochemical localization with emphasis on structures of the electrosensory system.
    Yamamoto T; Maler L; Hertzberg EL; Nagy JI
    J Comp Neurol; 1989 Nov; 289(3):509-36. PubMed ID: 2553783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A distinct population of neurons in the central posterior/prepacemaker nucleus project to the nucleus preopticus periventricularis in the weakly electric gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK; Horschke I
    Brain Res; 1997 Nov; 776(1-2):117-25. PubMed ID: 9439803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HRP labeling and ultrastructural localization of prepacemaker terminals within the medullary pacemaker nucleus of the weakly electric gymnotiform fish Apteronotus leptorhynchus.
    Szabo T; Heiligenberg W; Ravaille-Veron M
    J Comp Neurol; 1989 Jun; 284(2):169-73. PubMed ID: 2754033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal connections between the preglomerular nucleus and the central posterior/prepacemaker nucleus in the diencephalon of weakly electric fish, Apteronotus leptorhynchus.
    Zupanc GK; Horschke I
    Neuroscience; 1997 Sep; 80(2):653-67. PubMed ID: 9284365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sexual maturity-dependent changes in neuronal morphology in the prepacemaker nucleus of adult weakly electric knifefish, Eigenmannia.
    Zupanc GK; Heiligenberg W
    J Neurosci; 1989 Nov; 9(11):3816-27. PubMed ID: 2479726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendrodendritic gap junctions: a developmental approach.
    Mollgård K; Moller M
    Adv Neurol; 1975; 12():79-89. PubMed ID: 1155279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraglomerular dendritic link connected by gap junctions and chemical synapses in the mouse main olfactory bulb: electron microscopic serial section analyses.
    Kosaka T; Kosaka K
    Neuroscience; 2005; 131(3):611-25. PubMed ID: 15730867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projection of brain stem neurons to the giant electromotoneurons in the cervical spinal cord of the electric catfish Malapterurus electricus.
    Schikorski T; Braun N; Zimmermann H
    Brain Behav Evol; 1994; 43(6):306-18. PubMed ID: 8044672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology.
    Meek J; Grant K; Sugawara Y; Hafmans TG; Veron M; Denizot JP
    J Comp Neurol; 1996 Nov; 375(1):43-65. PubMed ID: 8913892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The morphology of the oval nuclei of neonatal Torpedo marmorata.
    Fox GQ
    Cell Tissue Res; 1977 Mar; 178(2):155-67. PubMed ID: 844072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal gap junctions in the polymorph layer of the rat dentate gyrus.
    Kosaka T
    Brain Res; 1983 Oct; 277(2):347-51. PubMed ID: 6640301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dendritic lamellar body: a new neuronal organelle putatively associated with dendrodendritic gap junctions.
    De Zeeuw CI; Hertzberg EL; Mugnaini E
    J Neurosci; 1995 Feb; 15(2):1587-604. PubMed ID: 7869120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Input to the medullary pacemaker nucleus in the weakly electric fish, Eigenmannia (sternopygidae, gymnotiformes).
    Heiligenberg W; Finger T; Matsubara J; Carr C
    Brain Res; 1981 May; 211(2):418-23. PubMed ID: 7016257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acutely isolated and cultured cells from the electrosensory lateral line lobe of a gymnotiform teleost.
    Turner RW; Borg LL
    J Comp Neurol; 1995 Jul; 358(3):305-23. PubMed ID: 7560289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Somatostatin in the prepacemaker nucleus of weakly electric fish, Apteronotus leptorhynchus: evidence for a nonsynaptic function.
    Stroh T; Zupanc GK
    Brain Res; 1995 Mar; 674(1):1-14. PubMed ID: 7773675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo.
    Castelló ME; Caputi A; Trujillo-Cenóz O
    J Comp Neurol; 1998 Nov; 401(4):549-63. PubMed ID: 9826277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projection neurons of the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology.
    Grant K; Meek J; Sugawara Y; Veron M; Denizot JP; Hafmans TG; Serrier J; Szabo T
    J Comp Neurol; 1996 Nov; 375(1):18-42. PubMed ID: 8913891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.