These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 19229732)

  • 1. Prospective and retrospective temporal difference learning.
    Dayan P
    Network; 2009; 20(1):32-46. PubMed ID: 19229732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the violation of reward maximization and invariance in reinforcement schedules.
    La Camera G; Richmond BJ
    PLoS Comput Biol; 2008 Aug; 4(8):e1000131. PubMed ID: 18688266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal and probabilistic discounting of rewards in children and adolescents: effects of age and ADHD symptoms.
    Scheres A; Dijkstra M; Ainslie E; Balkan J; Reynolds B; Sonuga-Barke E; Castellanos FX
    Neuropsychologia; 2006; 44(11):2092-103. PubMed ID: 16303152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain mechanism of reward prediction under predictable and unpredictable environmental dynamics.
    Tanaka SC; Samejima K; Okada G; Ueda K; Okamoto Y; Yamawaki S; Doya K
    Neural Netw; 2006 Oct; 19(8):1233-41. PubMed ID: 16979871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory meets pigeons: the influence of reward-magnitude on discrimination-learning.
    Rose J; Schmidt R; Grabemann M; Güntürkün O
    Behav Brain Res; 2009 Mar; 198(1):125-9. PubMed ID: 19041347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine-dependent reinforcement of motor skill learning: evidence from Gilles de la Tourette syndrome.
    Palminteri S; Lebreton M; Worbe Y; Hartmann A; Lehéricy S; Vidailhet M; Grabli D; Pessiglione M
    Brain; 2011 Aug; 134(Pt 8):2287-301. PubMed ID: 21727098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning the opportunity cost of time in a patch-foraging task.
    Constantino SM; Daw ND
    Cogn Affect Behav Neurosci; 2015 Dec; 15(4):837-53. PubMed ID: 25917000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive learning via selectionism and Bayesianism, Part II: the sequential case.
    Zhang J
    Neural Netw; 2009 Apr; 22(3):229-36. PubMed ID: 19395235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical mechanics of reward-modulated learning in decision-making networks.
    Katahira K; Okanoya K; Okada M
    Neural Comput; 2012 May; 24(5):1230-70. PubMed ID: 22295982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-control with spiking and non-spiking neural networks playing games.
    Christodoulou C; Banfield G; Cleanthous A
    J Physiol Paris; 2010; 104(3-4):108-17. PubMed ID: 19944157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mathematical models of decision making and learning].
    Ito M; Doya K
    Brain Nerve; 2008 Jul; 60(7):791-8. PubMed ID: 18646619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PVLV: the primary value and learned value Pavlovian learning algorithm.
    O'Reilly RC; Frank MJ; Hazy TE; Watz B
    Behav Neurosci; 2007 Feb; 121(1):31-49. PubMed ID: 17324049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The model of the reward choice basing on the theory of reinforcement learning].
    Smirnitskaia IA; Frolov AA; Merzhanova GKh
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2007; 57(2):133-43. PubMed ID: 17596009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral reactions reflecting differential reward expectations in monkeys.
    Watanabe M; Cromwell HC; Tremblay L; Hollerman JR; Hikosaka K; Schultz W
    Exp Brain Res; 2001 Oct; 140(4):511-8. PubMed ID: 11685405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of hippocampally dependent navigation, using the temporal difference learning rule.
    Foster DJ; Morris RG; Dayan P
    Hippocampus; 2000; 10(1):1-16. PubMed ID: 10706212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Context transfer in reinforcement learning using action-value functions.
    Mousavi A; Nadjar Araabi B; Nili Ahmadabadi M
    Comput Intell Neurosci; 2014; 2014():428567. PubMed ID: 25610457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.
    Tan AH; Lu N; Xiao D
    IEEE Trans Neural Netw; 2008 Feb; 19(2):230-44. PubMed ID: 18269955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spiking neural network model of an actor-critic learning agent.
    Potjans W; Morrison A; Diesmann M
    Neural Comput; 2009 Feb; 21(2):301-39. PubMed ID: 19196231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.