These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Blinking fluorophores: what do they tell us about protein dynamics? Bagshaw CR; Cherny D Biochem Soc Trans; 2006 Nov; 34(Pt 5):979-82. PubMed ID: 17052241 [TBL] [Abstract][Full Text] [Related]
4. Transition-state ensemble in enzyme catalysis: possibility, reality, or necessity? Ma B; Kumar S; Tsai CJ; Hu Z; Nussinov R J Theor Biol; 2000 Apr; 203(4):383-97. PubMed ID: 10736215 [TBL] [Abstract][Full Text] [Related]
5. Single molecule fluorescence studies of surface-adsorbed fibronectin. Antia M; Islas LD; Boness DA; Baneyx G; Vogel V Biomaterials; 2006 Feb; 27(5):679-90. PubMed ID: 16095684 [TBL] [Abstract][Full Text] [Related]
6. Evidence of an intermediate and parallel pathways in protein unfolding from single-molecule fluorescence. Orte A; Craggs TD; White SS; Jackson SE; Klenerman D J Am Chem Soc; 2008 Jun; 130(25):7898-907. PubMed ID: 18507381 [TBL] [Abstract][Full Text] [Related]
8. Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis. Min W; Xie XS; Bagchi B J Phys Chem B; 2008 Jan; 112(2):454-66. PubMed ID: 18085768 [TBL] [Abstract][Full Text] [Related]
9. Fluctuating enzymes: lessons from single-molecule studies. Min W; English BP; Luo G; Cherayil BJ; Kou SC; Xie XS Acc Chem Res; 2005 Dec; 38(12):923-31. PubMed ID: 16359164 [TBL] [Abstract][Full Text] [Related]
10. Dynamic disorder-driven substrate inhibition and bistability in a simple enzymatic reaction. Chaudhury S; Igoshin OA J Phys Chem B; 2009 Oct; 113(40):13421-8. PubMed ID: 19757836 [TBL] [Abstract][Full Text] [Related]
11. Protein structure and dynamics from single-molecule fluorescence resonance energy transfer. Wang D; Geva E J Phys Chem B; 2005 Feb; 109(4):1626-34. PubMed ID: 16851134 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence studies of single biomolecules. Li H; Ying L; Ren X; Balasubramanian S; Klenerman D Biochem Soc Trans; 2004 Nov; 32(Pt 5):753-6. PubMed ID: 15494006 [TBL] [Abstract][Full Text] [Related]
15. Application of single-molecule spectroscopy in studying enzyme kinetics and mechanism. Shi J; Dertouzos J; Gafni A; Steel D Methods Enzymol; 2008; 450():129-57. PubMed ID: 19152859 [TBL] [Abstract][Full Text] [Related]
16. Freezing a single distal motion in dihydrofolate reductase. Sergi A; Watney JB; Wong KF; Hammes-Schiffer S J Phys Chem B; 2006 Feb; 110(5):2435-41. PubMed ID: 16471835 [TBL] [Abstract][Full Text] [Related]
17. RNA folding dynamics by single-molecule fluorescence resonance energy transfer. Zhao R; Rueda D Methods; 2009 Oct; 49(2):112-7. PubMed ID: 19409995 [TBL] [Abstract][Full Text] [Related]
18. Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level. Xu W; Kong JS; Chen P Phys Chem Chem Phys; 2009 Apr; 11(15):2767-78. PubMed ID: 19421535 [TBL] [Abstract][Full Text] [Related]
19. Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. Blackmond DG Angew Chem Int Ed Engl; 2005 Jul; 44(28):4302-20. PubMed ID: 15997457 [TBL] [Abstract][Full Text] [Related]
20. Dynamic disorder in single-molecule Michaelis-Menten kinetics: the reaction-diffusion formalism in the Wilemski-Fixman approximation. Chaudhury S; Cherayil BJ J Chem Phys; 2007 Sep; 127(10):105103. PubMed ID: 17867782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]