These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 19229886)
21. Accurate Computation of Thermodynamic Activation Parameters in the Chorismate Mutase Reaction from Empirical Valence Bond Simulations. Wilkins RS; Lund BA; Isaksen GV; Åqvist J; Brandsdal BO J Chem Theory Comput; 2024 Jan; 20(1):451-458. PubMed ID: 38112329 [TBL] [Abstract][Full Text] [Related]
22. Computer simulations of enzyme catalysis: methods, progress, and insights. Warshel A Annu Rev Biophys Biomol Struct; 2003; 32():425-43. PubMed ID: 12574064 [TBL] [Abstract][Full Text] [Related]
23. Investigation of the enzymatic mechanism of the yeast chorismate mutase by docking a transition state analog. Lin SL; Xu D; Li A; Rosen M; Wolfson HJ; Nussinov R J Mol Biol; 1997 Sep; 271(5):838-45. PubMed ID: 9299331 [TBL] [Abstract][Full Text] [Related]
24. QM/MM calculations of kinetic isotope effects in the chorismate mutase active site. Martí S; Moliner V; Tuñón I; Williams IH Org Biomol Chem; 2003 Feb; 1(3):483-7. PubMed ID: 12926249 [TBL] [Abstract][Full Text] [Related]
25. Tyrosine and tryptophan act through the same binding site at the dimer interface of yeast chorismate mutase. Schnappauf G; Krappmann S; Braus GH J Biol Chem; 1998 Jul; 273(27):17012-7. PubMed ID: 9642265 [TBL] [Abstract][Full Text] [Related]
26. Exploring the active site of chorismate mutase by combinatorial mutagenesis and selection: the importance of electrostatic catalysis. Kast P; Asif-Ullah M; Jiang N; Hilvert D Proc Natl Acad Sci U S A; 1996 May; 93(10):5043-8. PubMed ID: 8643526 [TBL] [Abstract][Full Text] [Related]
27. Computationally designed variants of Escherichia coli chorismate mutase show altered catalytic activity. Lassila JK; Keeffe JR; Oelschlaeger P; Mayo SL Protein Eng Des Sel; 2005 Apr; 18(4):161-3. PubMed ID: 15820980 [TBL] [Abstract][Full Text] [Related]
28. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli. Christendat D; Saridakis VC; Turnbull JL Biochemistry; 1998 Nov; 37(45):15703-12. PubMed ID: 9843375 [TBL] [Abstract][Full Text] [Related]
29. Can the local electric field be a descriptor of catalytic activity? A case study on chorismate mutase. Siddiqui SA; Dubey KD Phys Chem Chem Phys; 2022 Jan; 24(4):1974-1981. PubMed ID: 34757367 [TBL] [Abstract][Full Text] [Related]
30. Investigation of ligand binding and protein dynamics in Bacillus subtilis chorismate mutase by transverse relaxation optimized spectroscopy-nuclear magnetic resonance. Eletsky A; Kienhöfer A; Hilvert D; Pervushin K Biochemistry; 2005 May; 44(18):6788-99. PubMed ID: 15865424 [TBL] [Abstract][Full Text] [Related]
31. Comment on "A stationary-wave model of enzyme catalysis" by Carlo Canepa. Lonsdale R; Harvey JN; Manby FR; Mulholland AJ J Comput Chem; 2011 Jan; 32(2):368-9; author reply 370-1. PubMed ID: 20652884 [TBL] [Abstract][Full Text] [Related]
33. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis. Burschowsky D; van Eerde A; Ökvist M; Kienhöfer A; Kast P; Hilvert D; Krengel U Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17516-21. PubMed ID: 25422475 [TBL] [Abstract][Full Text] [Related]
34. Temperature dependence of the structure of the substrate and active site of the Thermus thermophilus chorismate mutase E x S complex. Zhang X; Bruice TC Biochemistry; 2006 Jul; 45(28):8562-7. PubMed ID: 16834330 [TBL] [Abstract][Full Text] [Related]
35. New enzymes from combinatorial library modules. Besenmatter W; Kast P; Hilvert D Methods Enzymol; 2004; 388():91-102. PubMed ID: 15289064 [No Abstract] [Full Text] [Related]
36. Substrate conformational transitions in the active site of chorismate mutase: their role in the catalytic mechanism. Guo H; Cui Q; Lipscomb WN; Karplus M Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9032-7. PubMed ID: 11481470 [TBL] [Abstract][Full Text] [Related]
38. The evolution of multiple active site configurations in a designed enzyme. Hong NS; Petrović D; Lee R; Gryn'ova G; Purg M; Saunders J; Bauer P; Carr PD; Lin CY; Mabbitt PD; Zhang W; Altamore T; Easton C; Coote ML; Kamerlin SCL; Jackson CJ Nat Commun; 2018 Sep; 9(1):3900. PubMed ID: 30254369 [TBL] [Abstract][Full Text] [Related]
39. Structure and function of a complex between chorismate mutase and DAHP synthase: efficiency boost for the junior partner. Sasso S; Okvist M; Roderer K; Gamper M; Codoni G; Krengel U; Kast P EMBO J; 2009 Jul; 28(14):2128-42. PubMed ID: 19556970 [TBL] [Abstract][Full Text] [Related]
40. Consensus protein design without phylogenetic bias. Jäckel C; Bloom JD; Kast P; Arnold FH; Hilvert D J Mol Biol; 2010 Jun; 399(4):541-6. PubMed ID: 20433850 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]