BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19229895)

  • 1. Electrophilic activation of aldehydes "on water": a facile route to dipyrromethanes.
    Zoli L; Cozzi PG
    ChemSusChem; 2009; 2(3):218-20. PubMed ID: 19229895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkylthio unit as an alpha-pyrrole protecting group for use in dipyrromethane synthesis.
    Thamyongkit P; Bhise AD; Taniguchi M; Lindsey JS
    J Org Chem; 2006 Feb; 71(3):903-10. PubMed ID: 16438499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. I2-catalyzed synthesis of substituted pyrroles from α-amino carbonyl compounds and aldehydes.
    Yan R; Kang X; Zhou X; Li X; Liu X; Xiang L; Li Y; Huang G
    J Org Chem; 2014 Jan; 79(1):465-70. PubMed ID: 24350882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Advances in the Synthesis of Valuable Dipyrromethane Scaffolds: Classic and New Methods.
    Nascimento BFO; Lopes SMM; Pineiro M; Pinho E Melo TMVD
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31795117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient route to 2-substituted N-(1-amino-3-methylpyrrol)amides by ring-opening cyclization of benzylidene- and alkylidenecyclopropylcarbaldehydes with hydrazides.
    Tang XY; Shi M
    J Org Chem; 2009 Aug; 74(16):5983-6. PubMed ID: 20560565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecofriendly porphyrin synthesis by using water under microwave irradiation.
    Henriques CA; Pinto SM; Aquino GL; Pineiro M; Calvete MJ; Pereira MM
    ChemSusChem; 2014 Oct; 7(10):2821-4. PubMed ID: 25111181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Masked imidazolyl-dipyrromethanes in the synthesis of imidazole-substituted porphyrins.
    Bhaumik J; Yao Z; Borbas KE; Taniguchi M; Lindsey JS
    J Org Chem; 2006 Nov; 71(23):8807-17. PubMed ID: 17081010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient synthesis of porphyrins with different meso substituents that avoids scrambling in aqueous media.
    Nowak-Król A; Plamont R; Canard G; Edzang JA; Gryko DT; Balaban TS
    Chemistry; 2015 Jan; 21(4):1488-98. PubMed ID: 25417808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-vinylpyrroles and pyrrolo[3,2-d]pyrimidines from direct addition of aldehydes to 4-amino-pyrrole-2-carboxylate derivatives.
    Fridkin G; Lubell WD
    Org Lett; 2008 Mar; 10(5):849-52. PubMed ID: 18232701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tin-complexation strategy for use with diverse acylation methods in the preparation of 1,9-diacyldipyrromethanes.
    Tamaru S; Yu L; Youngblood WJ; Muthukumaran K; Taniguchi M; Lindsey JS
    J Org Chem; 2004 Feb; 69(3):765-77. PubMed ID: 14750803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1,2-sulfanyl group migration as a driving force: new approach to pyrroles by reaction of allenic aldehydes with amines.
    Peng L; Zhang X; Ma J; Zhong Z; Wang J
    Org Lett; 2007 Apr; 9(8):1445-8. PubMed ID: 17375933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient synthesis of monoacyl dipyrromethanes and their use in the preparation of sterically unhindered trans-porphyrins.
    Rao PD; Littler BJ; Geier III GR; Lindsey JS
    J Org Chem; 2000 Feb; 65(4):1084-92. PubMed ID: 10814057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of benzene, nitrobenzene, and dinitrobenzene 2-arylsulfenylpyrroles.
    Garabatos-Perera JR; Rotstein BH; Thompson A
    J Org Chem; 2007 Sep; 72(19):7382-5. PubMed ID: 17705533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a versatile multicomponent reaction leading to 2-amino-5-ketoaryl pyrroles.
    Wang K; Dömling A
    Chem Biol Drug Des; 2010 Mar; 75(3):277-83. PubMed ID: 20659110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly regioselective synthesis of polysubstituted pyrroles through three-component reaction induced by low-valent titanium reagent.
    Dou G; Shi C; Shi D
    J Comb Chem; 2008; 10(6):810-3. PubMed ID: 18729409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative carboxylation of arylaldehydes with water by a sulfoxylalkyl-substituted N-heterocyclic carbene catalyst.
    Yoshida M; Katagiri Y; Zhu WB; Shishido K
    Org Biomol Chem; 2009 Oct; 7(19):4062-6. PubMed ID: 19763312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient hydrogenation of benzaldehydes over mesopolymer-entrapped Pt nanoparticles in water.
    Li X; Shen Y; Song L; Wang H; Wu H; Liu Y; Wu P
    Chem Asian J; 2009 May; 4(5):699-706. PubMed ID: 19253925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decarboxylative formation of N-alkyl pyrroles from 4-hydroxyproline.
    Deb I; Coiro DJ; Seidel D
    Chem Commun (Camb); 2011 Jun; 47(22):6473-5. PubMed ID: 21556391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular one-pot synthesis of tetrasubstituted pyrroles from alpha-(alkylideneamino)nitriles.
    Bergner I; Opatz T
    J Org Chem; 2007 Sep; 72(19):7083-90. PubMed ID: 17713947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction of substituted furan-2-carboxaldehydes and furo[b]pyrrole type aldehydes with hippuric acid.
    Puterová Z; Sterk H; Krutosíková A
    Molecules; 2004 Jan; 9(1):11-21. PubMed ID: 18007407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.