These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19229959)

  • 1. Enantiopure cyclic O-substituted phenylphosphonothioic acid: synthesis and chirality-recognition ability.
    Ribeiro N; Kobayashi Y; Maeda J; Saigo K
    Chirality; 2011 Jul; 23(6):438-48. PubMed ID: 19229959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantiopure O-substituted phenylphosphonothioic acids: chiral recognition ability during salt crystallization and chiral recognition mechanism.
    Kobayashi Y; Morisawa F; Saigo K
    J Org Chem; 2006 Jan; 71(2):606-15. PubMed ID: 16408970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new hydrogen-bonding motif for chiral recognition in the diastereomeric salts of racemic 1-phenylethylamine derivatives with enantiopure O-ethyl phenylphosphonothioic acid.
    Kobayashi Y; Morisawa F; Saigo K
    Org Lett; 2004 Nov; 6(23):4227-30. PubMed ID: 15524449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution of sertraline with (R)-mandelic acid: chiral discrimination mechanism study.
    He Q; Rohani S; Zhu J; Gomaa H
    Chirality; 2012 Feb; 24(2):119-28. PubMed ID: 22173987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral discrimination in diastereomeric salts of chlorine-substituted mandelic acid and phenylethylamine.
    He Q; Gomaa H; Rohani S; Zhu J; Jennings M
    Chirality; 2010 Aug; 22(8):707-16. PubMed ID: 20143411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, absolute configuration, and application of enantiopure trans-1-aminobenz[f]indan-2-ol.
    Kobayashi Y; Kinbara K; Sato M; Saigo K
    Chirality; 2005 Feb; 17(2):108-12. PubMed ID: 15660440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-induced chirality control in the enantioseparation of 1-phenylethylamine via diastereomeric salt formation.
    Kodama K; Kimura Y; Shitara H; Yasutake M; Sakurai R; Hirose T
    Chirality; 2011 Apr; 23(4):326-32. PubMed ID: 21384437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of CH/pi interaction in the stabilization of less-soluble diastereomeric salt crystals.
    Saigo K; Kobayashi Y
    Chem Rec; 2007; 7(1):47-56. PubMed ID: 17304592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantiopure O-ethyl phenylphosphonothioic acid: a solvating agent for the determination of enantiomeric excesses.
    Matsumoto K; Sawayama J; Hirao S; Nishiwaki N; Sugimoto R; Saigo K
    Chirality; 2014 Oct; 26(10):614-9. PubMed ID: 24706407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors determining the pattern of a hydrogen-bonding network in the diastereomeric salts of 1-arylethylamines with enantiopure P-chiral acids.
    Kobayashi Y; Handa H; Maeda J; Saigo K
    Chirality; 2008 Mar; 20(3-4):577-84. PubMed ID: 18172835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two enantiomerically pure cyclic arenesulfonamide hydrochloride salts.
    Kiefer L; Dauban P; Dodd RH; Retailleau P
    Acta Crystallogr C; 2009 Feb; 65(Pt 2):o46-50. PubMed ID: 19190386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolution of 2-chloromandelic acid with (R)-(+)-N-benzyl-1-phenylethylamine: chiral discrimination mechanism.
    Peng Y; He Q; Rohani S; Jenkins H
    Chirality; 2012 May; 24(5):349-55. PubMed ID: 22508329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures and spectroscopic properties of ester amide and diamide of squaric acid with prolinamide.
    Kolev T; Seidel RW; Mayer-Figge H; Spiteller M; Sheldrick WS; Koleva BB
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Apr; 72(3):502-9. PubMed ID: 19101193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state molecular organization and solution behavior of methane-1,1-diphosphonic acid derivatives of heterocyclic amines: the role of the topochemical ring modification and the intramolecular hydrogen bonds in monosubstituted piperid-1-ylmethane-1,1-diphosphonic acids.
    Matczak-Jon E; Videnova-Adrabińska V; Burzyńska A; Kafarski P; Lis T
    Chemistry; 2005 Apr; 11(8):2357-72. PubMed ID: 15669076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of hydrogen-bonded ternary organic crystals derived from L-tartaric acid and their application to enantioseparation of secondary alcohols.
    Kodama K; Sekine E; Hirose T
    Chemistry; 2011 Oct; 17(41):11527-34. PubMed ID: 21887716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional hydrogen-bonded structures in the guanidinium salts of the monocyclic dicarboxylic acids rac-trans-cyclohexane-1,2-dicarboxylic acid (2:1, anhydrous), isophthalic acid (1:1, monohydrate) and terephthalic acid (2:1, trihydrate).
    Smith G; Wermuth UD
    Acta Crystallogr C; 2010 Dec; 66(Pt 12):o575-80. PubMed ID: 21123887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra- and intermolecular interactions in small bioactive molecules: cooperative features from experimental and theoretical charge-density analysis.
    Munshi P; Guru Row TN
    Acta Crystallogr B; 2006 Aug; 62(Pt 4):612-26. PubMed ID: 16840811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic characterization of the first reported crystalline form of the potent hallucinogen (R)-2-amino-1-(8-bromobenzo[1,2-b;5,4-b']difuran-4-yl)propane or 'bromodragonfly': the 1:1 anhydrous proton-transfer compound with 3,5-dinitrosalicylic acid.
    Smith G; Cotton MS; Wermuth UD; Boyd SE
    Acta Crystallogr C; 2010 May; 66(Pt 5):o252-5. PubMed ID: 20442509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of an elastase-specific inhibitor elafin complexed with porcine pancreatic elastase determined at 1.9 A resolution.
    Tsunemi M; Matsuura Y; Sakakibara S; Katsube Y
    Biochemistry; 1996 Sep; 35(36):11570-6. PubMed ID: 8794736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-induced reversed stereoselectivity in reciprocal resolutions of mandelic acid and erythro-2-amino-1,2-diphenylethanol.
    Shitara H; Shintani T; Kodama K; Hirose T
    J Org Chem; 2013 Sep; 78(18):9309-16. PubMed ID: 23924430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.