BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 192307)

  • 1. 1H NMR studies of the heme iron coordination in cytochrome c-552 from Euglena gracilis.
    Keller RM; Wüthrich K; Schejter A
    Biochim Biophys Acta; 1977 Apr; 491(2):409-15. PubMed ID: 192307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H-NMR studies of the coordination geometry at the heme iron and the electronic structure of the heme group in cytochrome c-552 from Euglena gracilis.
    Keller RM; Schejter A; Wüthrich K
    Biochim Biophys Acta; 1980 Nov; 626(1):15-22. PubMed ID: 6257303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1H NMR studies at 360 MHz of the aromatic amino acid residues in ferrocytochrome c-552 from Euglena gracilis.
    Keller RM; Wüthrich K
    Biochim Biophys Acta; 1977 Apr; 491(2):416-22. PubMed ID: 192308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual 1H-NMR assignments for the heme groups and the axially bound amino acids and determination of the coordination geometry at the heme iron in a mixture of two isocytochromes c-551 from Rhodopseudomonas gelatinosa.
    Senn H; Wüthrich K
    Biochim Biophys Acta; 1983 Feb; 743(1):69-81. PubMed ID: 6297597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1H-NMR studies of structural homologies between the heme environments in horse cytochrome c and in cytochrome c-552 from Euglena gracilis.
    Keller RM; Wüthrich K
    Biochim Biophys Acta; 1981 Apr; 668(2):307-20. PubMed ID: 6261826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the coordination geometry at the heme iron in three cytochromes c from Saccharomyces cerevisiae and from Candida krusei based on individual 1H-NMR assignments for heme c and the axially coordinated amino acids.
    Senn H; Eugster A; Wüthrich K
    Biochim Biophys Acta; 1983 Feb; 743(1):58-68. PubMed ID: 6297596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An atypical heme-binding structure of cytochrome c1 of Euglena gracilis mitochondrial complex III.
    Mukai K; Yoshida M; Toyosaki H; Yao Y; Wakabayashi S; Matsubara H
    Eur J Biochem; 1989 Jan; 178(3):649-56. PubMed ID: 2536325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of the heme iron in the low-potential cytochromes c-553 from Desulfovibrio vulgaris and Desulfovibrio desulfuricans. Different chirality of the axially bound methionine in the oxidized and reduced states.
    Senn H; Guerlesquin F; Bruschi M; Wüthrich K
    Biochim Biophys Acta; 1983 Oct; 748(2):194-204. PubMed ID: 6313059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies of cytochrome c-551 by 1H NMR spectroscopy at 360 MHz.
    Keller RM; Wüthrich K; Pecht I
    FEBS Lett; 1976 Nov; 70(1):180-4. PubMed ID: 186319
    [No Abstract]   [Full Text] [Related]  

  • 10. Alkaline isomerization of ferricytochrome C from Euglena gracilis.
    Stellwagen E; Cass R
    Biochem Biophys Res Commun; 1974 Sep; 60(1):371-5. PubMed ID: 4371200
    [No Abstract]   [Full Text] [Related]  

  • 11. Physicochemical properties of two atypical cytochromes c, Crithidia cytochrome c-557 and Euglena cytochrome c-558.
    Pettigrew GW; Aviram I; Schejter A
    Biochem J; 1975 Jul; 149(1):155-67. PubMed ID: 242319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new spatial structure for the axial methionine observed in cytochrome c5 from Pseudomonas mendocina. Correlations with the electronic structure of heme c.
    Senn H; Wüthrich K
    Biochim Biophys Acta; 1983 Sep; 747(1-2):16-25. PubMed ID: 6309240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual assignments of the heme resonances in the 360 MHz 1H NMR spectra of cytochrome c-557 from Crithidia oncopelti.
    Keller RM; Picot D; Wüthrich K
    Biochim Biophys Acta; 1979 Oct; 580(2):259-65. PubMed ID: 229911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pitfalls in assigning heme axial coordination by EPR. c-Type cytochromes with atypical Met-His ligation.
    Teixeira M; Campos AP; Aguiar AP; Costa HS; Santos H; Turner DL; Xavier AV
    FEBS Lett; 1993 Feb; 317(3):233-6. PubMed ID: 8381094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational transitions of a cytochrome c having a single thioether bridge.
    Brems DN; Stellwagen E
    J Biol Chem; 1983 Sep; 258(18):10919-23. PubMed ID: 6309822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nature of the axial ligands of spinach cytochrome.
    Siedow JN; Vickery LE; Palmer G
    Arch Biochem Biophys; 1980 Aug; 203(1):101-7. PubMed ID: 6250479
    [No Abstract]   [Full Text] [Related]  

  • 17. Structural homology of cytochromes c.
    Cookson DJ; Moore GR; Pitt RC; Williams RJ; Campbell ID; Ambler RP; Bruschi M; LeGall J
    Eur J Biochem; 1978 Feb; 83(1):261-75. PubMed ID: 203462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning and nucleotide sequence of a cDNA encoding Euglena gracilis cytochrome c1.
    Mukai K; Wakabayashi S; Matsubara H
    J Biochem; 1989 Sep; 106(3):479-82. PubMed ID: 2558110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton magnetic relaxation and anion effect in solutions of acid ferricytochrome c.
    Lanir A; Aviram I
    Arch Biochem Biophys; 1975 Feb; 166(2):439-45. PubMed ID: 235240
    [No Abstract]   [Full Text] [Related]  

  • 20. 1H NMR studies of the electron exchange between cytochrome c and iron hexacyanides. Definition of the iron hexacyanide binding sites on cytochrome c.
    Eley CG; Moore GR; Williams G; Williams RJ
    Eur J Biochem; 1982 May; 124(2):295-303. PubMed ID: 6284504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.