These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 19230722)
1. Chemical dissection of an essential redox switch in yeast. Paulsen CE; Carroll KS Chem Biol; 2009 Feb; 16(2):217-25. PubMed ID: 19230722 [TBL] [Abstract][Full Text] [Related]
2. Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal. Okazaki S; Tachibana T; Naganuma A; Mano N; Kuge S Mol Cell; 2007 Aug; 27(4):675-88. PubMed ID: 17707237 [TBL] [Abstract][Full Text] [Related]
3. Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast. Okazaki S; Naganuma A; Kuge S Antioxid Redox Signal; 2005; 7(3-4):327-34. PubMed ID: 15706081 [TBL] [Abstract][Full Text] [Related]
4. A genetically encoded probe for the identification of proteins that form sulfenic acid in response to H2O2 in Saccharomyces cerevisiae. Takanishi CL; Wood MJ J Proteome Res; 2011 Jun; 10(6):2715-24. PubMed ID: 21476607 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamic basis for redox regulation of the Yap1 signal transduction pathway. Mason JT; Kim SK; Knaff DB; Wood MJ Biochemistry; 2006 Nov; 45(45):13409-17. PubMed ID: 17087494 [TBL] [Abstract][Full Text] [Related]
7. A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction-sensitive disulfide bonds and reveals a low level of transcriptional activation. Tachibana T; Okazaki S; Murayama A; Naganuma A; Nomoto A; Kuge S J Biol Chem; 2009 Feb; 284(7):4464-72. PubMed ID: 19106090 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for redox regulation of Yap1 transcription factor localization. Wood MJ; Storz G; Tjandra N Nature; 2004 Aug; 430(7002):917-21. PubMed ID: 15318225 [TBL] [Abstract][Full Text] [Related]
9. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Delaunay A; Pflieger D; Barrault MB; Vinh J; Toledano MB Cell; 2002 Nov; 111(4):471-81. PubMed ID: 12437921 [TBL] [Abstract][Full Text] [Related]
10. Gpx3-dependent responses against oxidative stress in Saccharomyces cerevisiae. Kho CW; Lee PY; Bae KH; Kang S; Cho S; Lee DH; Sun CH; Yi GS; Park BC; Park SG J Microbiol Biotechnol; 2008 Feb; 18(2):270-82. PubMed ID: 18309271 [TBL] [Abstract][Full Text] [Related]
11. Ionizing radiation induces a Yap1-dependent peroxide stress response in yeast. Molin M; Renault JP; Lagniel G; Pin S; Toledano M; Labarre J Free Radic Biol Med; 2007 Jul; 43(1):136-44. PubMed ID: 17561102 [TBL] [Abstract][Full Text] [Related]
12. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo. Takanishi CL; Ma LH; Wood MJ Biochemistry; 2007 Dec; 46(50):14725-32. PubMed ID: 18020457 [TBL] [Abstract][Full Text] [Related]
13. Molecular mechanism of oxidative stress perception by the Orp1 protein. Ma LH; Takanishi CL; Wood MJ J Biol Chem; 2007 Oct; 282(43):31429-36. PubMed ID: 17720812 [TBL] [Abstract][Full Text] [Related]
14. Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling. Azevedo D; Tacnet F; Delaunay A; Rodrigues-Pousada C; Toledano MB Free Radic Biol Med; 2003 Oct; 35(8):889-900. PubMed ID: 14556853 [TBL] [Abstract][Full Text] [Related]
16. Formation and reactions of sulfenic acid in human serum albumin. Alvarez B; Carballal S; Turell L; Radi R Methods Enzymol; 2010; 473():117-36. PubMed ID: 20513474 [TBL] [Abstract][Full Text] [Related]
17. The S. cerevisiae Yap1 and Yap2 transcription factors share a common cadmium-sensing domain. Azevedo D; Nascimento L; Labarre J; Toledano MB; Rodrigues-Pousada C FEBS Lett; 2007 Jan; 581(2):187-95. PubMed ID: 17187783 [TBL] [Abstract][Full Text] [Related]
18. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Carballal S; Radi R; Kirk MC; Barnes S; Freeman BA; Alvarez B Biochemistry; 2003 Aug; 42(33):9906-14. PubMed ID: 12924939 [TBL] [Abstract][Full Text] [Related]
19. How to flip the (redox) switch. Georgiou G Cell; 2002 Nov; 111(5):607-10. PubMed ID: 12464172 [TBL] [Abstract][Full Text] [Related]
20. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Biteau B; Labarre J; Toledano MB Nature; 2003 Oct; 425(6961):980-4. PubMed ID: 14586471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]