These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 19230742)
1. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Langton CM; Pisharody S; Keyak JH Med Eng Phys; 2009 Jul; 31(6):668-72. PubMed ID: 19230742 [TBL] [Abstract][Full Text] [Related]
2. Sensitivity of proximal femoral stiffness and areal bone mineral density to changes in bone geometry and density. Pisharody S; Phillips R; Langton CM Proc Inst Mech Eng H; 2008 Apr; 222(3):367-75. PubMed ID: 18491705 [TBL] [Abstract][Full Text] [Related]
3. Estimation of 3D shape, internal density and mechanics of proximal femur by combining bone mineral density images with shape and density templates. Väänänen SP; Jurvelin JS; Isaksson H Biomech Model Mechanobiol; 2012 Jul; 11(6):791-800. PubMed ID: 21986796 [TBL] [Abstract][Full Text] [Related]
4. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image. Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575 [TBL] [Abstract][Full Text] [Related]
5. Assessment of the 3-D shape and mechanics of the proximal femur using a shape template and a bone mineral density image. Väänänen SP; Isaksson H; Julkunen P; Sirola J; Kröger H; Jurvelin JS Biomech Model Mechanobiol; 2011 Jul; 10(4):529-38. PubMed ID: 20809392 [TBL] [Abstract][Full Text] [Related]
6. Are DXA/aBMD and QCT/FEA Stiffness and Strength Estimates Sensitive to Sex and Age? Rezaei A; Giambini H; Rossman T; Carlson KD; Yaszemski MJ; Lu L; Dragomir-Daescu D Ann Biomed Eng; 2017 Dec; 45(12):2847-2856. PubMed ID: 28940110 [TBL] [Abstract][Full Text] [Related]
7. Prediction of strength and strain of the proximal femur by a CT-based finite element method. Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798 [TBL] [Abstract][Full Text] [Related]
8. In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur. Cong A; Buijs JO; Dragomir-Daescu D Med Eng Phys; 2011 Mar; 33(2):164-73. PubMed ID: 21030287 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT). Pottecher P; Engelke K; Duchemin L; Museyko O; Moser T; Mitton D; Vicaut E; Adams J; Skalli W; Laredo JD; Bousson V Radiology; 2016 Sep; 280(3):837-47. PubMed ID: 27077380 [TBL] [Abstract][Full Text] [Related]
10. In-vivo assessment of femoral bone strength using Finite Element Analysis (FEA) based on routine MDCT imaging: a preliminary study on patients with vertebral fractures. Liebl H; Garcia EG; Holzner F; Noel PB; Burgkart R; Rummeny EJ; Baum T; Bauer JS PLoS One; 2015; 10(2):e0116907. PubMed ID: 25723187 [TBL] [Abstract][Full Text] [Related]
11. Prediction of femoral strength using 3D finite element models reconstructed from DXA images: validation against experiments. Grassi L; Väänänen SP; Ristinmaa M; Jurvelin JS; Isaksson H Biomech Model Mechanobiol; 2017 Jun; 16(3):989-1000. PubMed ID: 28004226 [TBL] [Abstract][Full Text] [Related]
12. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. Bourne BC; van der Meulen MC J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990 [TBL] [Abstract][Full Text] [Related]
13. Proximal femur specimens: automated 3D trabecular bone mineral density analysis at multidetector CT--correlation with biomechanical strength measurement. Huber MB; Carballido-Gamio J; Bauer JS; Baum T; Eckstein F; Lochmüller EM; Majumdar S; Link TM Radiology; 2008 May; 247(2):472-81. PubMed ID: 18430879 [TBL] [Abstract][Full Text] [Related]
14. A comparison of DXA and CT based methods for estimating the strength of the femoral neck in post-menopausal women. Danielson ME; Beck TJ; Karlamangla AS; Greendale GA; Atkinson EJ; Lian Y; Khaled AS; Keaveny TM; Kopperdahl D; Ruppert K; Greenspan S; Vuga M; Cauley JA Osteoporos Int; 2013 Apr; 24(4):1379-88. PubMed ID: 22810918 [TBL] [Abstract][Full Text] [Related]
15. Experimental validation of finite element model for proximal composite femur using optical measurements. Grassi L; Väänänen SP; Amin Yavari S; Weinans H; Jurvelin JS; Zadpoor AA; Isaksson H J Mech Behav Biomed Mater; 2013 May; 21():86-94. PubMed ID: 23510970 [TBL] [Abstract][Full Text] [Related]
16. Prediction of fracture load and stiffness of the proximal femur by CT-based specimen specific finite element analysis: cadaveric validation study. Miura M; Nakamura J; Matsuura Y; Wako Y; Suzuki T; Hagiwara S; Orita S; Inage K; Kawarai Y; Sugano M; Nawata K; Ohtori S BMC Musculoskelet Disord; 2017 Dec; 18(1):536. PubMed ID: 29246133 [TBL] [Abstract][Full Text] [Related]
17. Generation of a 3D proximal femur shape from a single projection 2D radiographic image. Langton CM; Pisharody S; Keyak JH Osteoporos Int; 2009 Mar; 20(3):455-61. PubMed ID: 18563512 [TBL] [Abstract][Full Text] [Related]
18. Constructing anisotropic finite element model of bone from computed tomography (CT). Kazembakhshi S; Luo Y Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965 [TBL] [Abstract][Full Text] [Related]
19. Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology. Gong H; Zhang M; Fan Y; Kwok WL; Leung PC Ann Biomed Eng; 2012 Jul; 40(7):1575-85. PubMed ID: 22258889 [TBL] [Abstract][Full Text] [Related]
20. Femoral bone mineral density distribution is dominantly regulated by strain energy density in remodeling. Zhang Y; Luo Y Biomed Mater Eng; 2020; 31(3):179-190. PubMed ID: 32597795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]