BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19230842)

  • 1. Smart nanobombs for inducing traumatic death of cancer cells.
    Park K
    J Control Release; 2009 Apr; 135(1):1. PubMed ID: 19230842
    [No Abstract]   [Full Text] [Related]  

  • 2. Dendrimers in oncology: an expanding horizon.
    Tekade RK; Kumar PV; Jain NK
    Chem Rev; 2009 Jan; 109(1):49-87. PubMed ID: 19099452
    [No Abstract]   [Full Text] [Related]  

  • 3. Thermally triggered intracellular explosion of volume transition nanogels for necrotic cell death.
    Lee Y; Park SY; Kim C; Park TG
    J Control Release; 2009 Apr; 135(1):89-95. PubMed ID: 19154762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging.
    Wang H; Ke F; Mararenko A; Wei Z; Banerjee P; Zhou S
    Nanoscale; 2014 Jul; 6(13):7443-52. PubMed ID: 24881520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidic pH-responsive nanogels as smart cargo systems for the simultaneous loading and release of short oligonucleotides and magnetic nanoparticles.
    Deka SR; Quarta A; Di Corato R; Falqui A; Manna L; Cingolani R; Pellegrino T
    Langmuir; 2010 Jun; 26(12):10315-24. PubMed ID: 20355740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embedding fluorescent mesoporous silica nanoparticles into biocompatible nanogels for tumor cell imaging and thermo/pH-sensitive in vitro drug release.
    Gui R; Wang Y; Sun J
    Colloids Surf B Biointerfaces; 2014 Apr; 116():518-25. PubMed ID: 24576821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellularly Degradable, Self-Assembled Amphiphilic Block Copolycurcumin Nanoparticles for Efficient In Vivo Cancer Chemotherapy.
    Lv L; Guo Y; Shen Y; Liu J; Zhang W; Zhou D; Guo S
    Adv Healthc Mater; 2015 Jul; 4(10):1496-501, 1423. PubMed ID: 26033838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of tBid transgene for directed killing of MUC1 over-expressing tumour cells.
    Sadeqzadeh E; Rahbarizadeh F; Ahmadvand D; Rasaee MJ; Parhamifar L; Moghimi SM
    J Control Release; 2011 Nov; 156(1):85-91. PubMed ID: 21704663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive Nanogels.
    Nagahama K; Hashizume M; Yamamoto H; Ouchi T; Ohya Y
    Langmuir; 2009 Sep; 25(17):9734-40. PubMed ID: 19705882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of self-organizing nanogel with acetylated chondroitin sulfate as an anti-cancer drug carrier.
    Park W; Park SJ; Na K
    Colloids Surf B Biointerfaces; 2010 Sep; 79(2):501-8. PubMed ID: 20541919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle.
    Qin Y; Chen J; Bi Y; Xu X; Zhou H; Gao J; Hu Y; Zhao Y; Chai Z
    Acta Biomater; 2015 Apr; 17():201-9. PubMed ID: 25644449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new multiresponsive drug delivery system using smart nanogels.
    Demirel GB; von Klitzing R
    Chemphyschem; 2013 Aug; 14(12):2833-40. PubMed ID: 23794381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatoma-targeting and pH-sensitive nanocarriers based on a novel D-galactopyranose copolymer for efficient drug delivery.
    Ding Y; Han J; Tian B; Han J; Zhang J; Zheng H; Han Y; Pei M
    Int J Pharm; 2014 Dec; 477(1-2):187-96. PubMed ID: 25455771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent nanogel of arsenic sulfide nanoclusters.
    Wang J; Loh KP; Wang Z; Yan Y; Zhong Y; Xu QH; Ho PC
    Angew Chem Int Ed Engl; 2009; 48(34):6282-5. PubMed ID: 19621402
    [No Abstract]   [Full Text] [Related]  

  • 15. Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells.
    Hanafi-Bojd MY; Jaafari MR; Ramezanian N; Xue M; Amin M; Shahtahmassebi N; Malaekeh-Nikouei B
    Eur J Pharm Biopharm; 2015 Jan; 89():248-58. PubMed ID: 25511563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release.
    Wang H; Yi J; Mukherjee S; Banerjee P; Zhou S
    Nanoscale; 2014 Nov; 6(21):13001-11. PubMed ID: 25243783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paclitaxel-loaded Pluronic nanoparticles formed by a temperature-induced phase transition for cancer therapy.
    Oh KS; Song JY; Cho SH; Lee BS; Kim SY; Kim K; Jeon H; Kwon IC; Yuk SH
    J Control Release; 2010 Dec; 148(3):344-50. PubMed ID: 20797418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual thermoresponsive and pH-responsive self-assembled micellar nanogel for anticancer drug delivery.
    Chen D; Yu H; Sun K; Liu W; Wang H
    Drug Deliv; 2014 Jun; 21(4):258-64. PubMed ID: 24102086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexagonal prism nanocarriers for mitigated phagocytosis.
    Park K
    J Control Release; 2011 Aug; 154(1):1. PubMed ID: 21771619
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.