These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 19230853)
1. Active site loop dictates the thermodynamics of reduction and ligand protonation in cupredoxins. Battistuzzi G; Borsari M; Dennison C; Li C; Ranieri A; Sola M; Yanagisawa S Biochim Biophys Acta; 2009 Jul; 1794(7):995-1000. PubMed ID: 19230853 [TBL] [Abstract][Full Text] [Related]
2. Engineering copper sites in proteins: loops confer native structures and properties to chimeric cupredoxins. Li C; Banfield MJ; Dennison C J Am Chem Soc; 2007 Jan; 129(3):709-18. PubMed ID: 17227035 [TBL] [Abstract][Full Text] [Related]
3. The influence of active site loop mutations on the thermal stability of azurin from Pseudomonas aeruginosa. Guzzi R; Sportelli L; Yanagisawa S; Li C; Kostrz D; Dennison C Arch Biochem Biophys; 2012 May; 521(1-2):18-23. PubMed ID: 22446157 [TBL] [Abstract][Full Text] [Related]
4. Loop-contraction mutagenesis of type 1 copper sites. Yanagisawa S; Dennison C J Am Chem Soc; 2004 Dec; 126(48):15711-9. PubMed ID: 15571393 [TBL] [Abstract][Full Text] [Related]
5. Ligand loop effects on the free energy change of redox and pH-dependent equilibria in cupredoxins probed on amicyanin variants. Battistuzzi G; Borsari M; Canters GW; di Rocco G; de Waal E; Arendsen Y; Leonardi A; Ranieri A; Sola M Biochemistry; 2005 Jul; 44(29):9944-9. PubMed ID: 16026167 [TBL] [Abstract][Full Text] [Related]
6. Metal-binding loop length is a determinant of the pKa of a histidine ligand at a type 1 copper site. Li C; Sato K; Monari S; Salard I; Sola M; Banfield MJ; Dennison C Inorg Chem; 2011 Jan; 50(2):482-8. PubMed ID: 21141901 [TBL] [Abstract][Full Text] [Related]
7. Basic requirements for a metal-binding site in a protein: the influence of loop shortening on the cupredoxin azurin. Li C; Yanagisawa S; Martins BM; Messerschmidt A; Banfield MJ; Dennison C Proc Natl Acad Sci U S A; 2006 May; 103(19):7258-63. PubMed ID: 16651527 [TBL] [Abstract][Full Text] [Related]
8. How the dynamics of the metal-binding loop region controls the acid transition in cupredoxins. Paltrinieri L; Borsari M; Battistuzzi G; Sola M; Dennison C; de Groot BL; Corni S; Bortolotti CA Biochemistry; 2013 Oct; 52(42):7397-404. PubMed ID: 24063705 [TBL] [Abstract][Full Text] [Related]
9. Influence of loop shortening on the metal binding site of cupredoxin pseudoazurin. Velarde M; Huber R; Yanagisawa S; Dennison C; Messerschmidt A Biochemistry; 2007 Sep; 46(35):9981-91. PubMed ID: 17685636 [TBL] [Abstract][Full Text] [Related]
10. Electrostatic effects on the thermodynamics of protonation of reduced plastocyanin. Battistuzzi G; Borsari M; Di Rocco G; Leonardi A; Ranieri A; Sola M Chembiochem; 2005 Apr; 6(4):692-6. PubMed ID: 15750998 [TBL] [Abstract][Full Text] [Related]
11. Coupling of protonation, reduction, and conformational change in azurin from Pseudomonas aeruginosa investigated with free energy measures of cooperativity. Ullmann RT; Ullmann GM J Phys Chem B; 2011 Sep; 115(34):10346-59. PubMed ID: 21774518 [TBL] [Abstract][Full Text] [Related]
12. Metal-binding loop length and not sequence dictates structure. Sato K; Li C; Salard I; Thompson AJ; Banfield MJ; Dennison C Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5616-21. PubMed ID: 19299503 [TBL] [Abstract][Full Text] [Related]
13. Control of metalloprotein reduction potential: compensation phenomena in the reduction thermodynamics of blue copper proteins. Battistuzzi G; Bellei M; Borsari M; Canters GW; de Waal E; Jeuken LJ; Ranieri A; Sola M Biochemistry; 2003 Aug; 42(30):9214-20. PubMed ID: 12885256 [TBL] [Abstract][Full Text] [Related]
14. Metal-ligand interplay in blue copper proteins studied by 1H NMR spectroscopy: Cu(II)-pseudoazurin and Cu(II)-rusticyanin. Donaire A; Jiménez B; Fernández CO; Pierattelli R; Niizeki T; Moratal JM; Hall JF; Kohzuma T; Hasnain SS; Vila AJ J Am Chem Soc; 2002 Nov; 124(46):13698-708. PubMed ID: 12431099 [TBL] [Abstract][Full Text] [Related]
15. Enthalpic and entropic contributions to the mutational changes in the reduction potential of azurin. Battistuzzi G; Borsari M; Canters GW; de Waal E; Loschi L; Warmerdam G; Sola M Biochemistry; 2001 Jun; 40(23):6707-12. PubMed ID: 11389584 [TBL] [Abstract][Full Text] [Related]
16. The role of hydrogen bonding at the active site of a cupredoxin: the Phe114Pro azurin variant. Yanagisawa S; Banfield MJ; Dennison C Biochemistry; 2006 Jul; 45(29):8812-22. PubMed ID: 16846224 [TBL] [Abstract][Full Text] [Related]
17. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin. Paraskevopoulos K; Sundararajan M; Surendran R; Hough MA; Eady RR; Hillier IH; Hasnain SS Dalton Trans; 2006 Jul; (25):3067-76. PubMed ID: 16786065 [TBL] [Abstract][Full Text] [Related]
18. Binuclear Cu(A) Formation in Biosynthetic Models of Cu(A) in Azurin Proceeds via a Novel Cu(Cys)2His Mononuclear Copper Intermediate. Chakraborty S; Polen MJ; Chacón KN; Wilson TD; Yu Y; Reed J; Nilges MJ; Blackburn NJ; Lu Y Biochemistry; 2015 Oct; 54(39):6071-81. PubMed ID: 26352296 [TBL] [Abstract][Full Text] [Related]
19. Shift from Entropic Cu North ML; Wilcox DE J Am Chem Soc; 2019 Sep; 141(36):14329-14339. PubMed ID: 31433629 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamics of the acid transition in blue copper proteins. Battistuzzi G; Borsari M; Canters GW; de Waal E; Leonardi A; Ranieri A; Sola M Biochemistry; 2002 Dec; 41(48):14293-8. PubMed ID: 12450394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]