These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 19231140)
1. Comparative analysis of NMR chemical shift predictions for proteins in the solid phase. Seidel K; Etzkorn M; Schneider R; Ader C; Baldus M Solid State Nucl Magn Reson; 2009 Jul; 35(4):235-42. PubMed ID: 19231140 [TBL] [Abstract][Full Text] [Related]
2. Toward direct determination of conformations of protein building units from multidimensional NMR experiments VI: chemical shift analysis of his to gain 3D structure and protonation state information. Hudáky P; Perczel A J Comput Chem; 2005 Oct; 26(13):1307-17. PubMed ID: 15999335 [TBL] [Abstract][Full Text] [Related]
3. Determination of protein structures in the solid state from NMR chemical shifts. Robustelli P; Cavalli A; Vendruscolo M Structure; 2008 Dec; 16(12):1764-9. PubMed ID: 19081052 [TBL] [Abstract][Full Text] [Related]
4. NMR: prediction of protein flexibility. Berjanskii M; Wishart DS Nat Protoc; 2006; 1(2):683-8. PubMed ID: 17406296 [TBL] [Abstract][Full Text] [Related]
5. Predicting the redox state and secondary structure of cysteine residues in proteins using NMR chemical shifts. Wang CC; Chen JH; Yin SH; Chuang WJ Proteins; 2006 Apr; 63(1):219-26. PubMed ID: 16444707 [TBL] [Abstract][Full Text] [Related]
6. Sequence-specific random coil chemical shifts of intrinsically disordered proteins. Tamiola K; Acar B; Mulder FA J Am Chem Soc; 2010 Dec; 132(51):18000-3. PubMed ID: 21128621 [TBL] [Abstract][Full Text] [Related]
7. Solvation and hydrogen bonding in alanine- and glycine-containing dipeptides probed using solution- and solid-state NMR spectroscopy. Bhate MP; Woodard JC; Mehta MA J Am Chem Soc; 2009 Jul; 131(27):9579-89. PubMed ID: 19537718 [TBL] [Abstract][Full Text] [Related]
8. PIPATH: an optimized algorithm for generating alpha-helical structures from PISEMA data. Asbury T; Quine JR; Achuthan S; Hu J; Chapman MS; Cross TA; Bertram R J Magn Reson; 2006 Nov; 183(1):87-95. PubMed ID: 16914335 [TBL] [Abstract][Full Text] [Related]
9. Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach. He X; Wang B; Merz KM J Phys Chem B; 2009 Jul; 113(30):10380-8. PubMed ID: 19575540 [TBL] [Abstract][Full Text] [Related]
10. Folding of small proteins by Monte Carlo simulations with chemical shift restraints without the use of molecular fragment replacement or structural homology. Robustelli P; Cavalli A; Dobson CM; Vendruscolo M; Salvatella X J Phys Chem B; 2009 Jun; 113(22):7890-6. PubMed ID: 19425536 [TBL] [Abstract][Full Text] [Related]
11. Probing structure in invisible protein states with anisotropic NMR chemical shifts. Vallurupalli P; Hansen DF; Kay LE J Am Chem Soc; 2008 Mar; 130(9):2734-5. PubMed ID: 18257570 [TBL] [Abstract][Full Text] [Related]
12. Accurate random coil chemical shifts from an analysis of loop regions in native states of proteins. De Simone A; Cavalli A; Hsu ST; Vranken W; Vendruscolo M J Am Chem Soc; 2009 Nov; 131(45):16332-3. PubMed ID: 19852475 [TBL] [Abstract][Full Text] [Related]
13. Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution. O'Hare B; Benesi AJ; Showalter SA J Magn Reson; 2009 Oct; 200(2):354-8. PubMed ID: 19648037 [TBL] [Abstract][Full Text] [Related]
14. Detection of initiation sites in protein folding of the four helix bundle ACBP by chemical shift analysis. Modig K; Jürgensen VW; Lindorff-Larsen K; Fieber W; Bohr HG; Poulsen FM FEBS Lett; 2007 Oct; 581(25):4965-71. PubMed ID: 17910956 [TBL] [Abstract][Full Text] [Related]
15. From NMR chemical shifts to amino acid types: investigation of the predictive power carried by nuclei. Marin A; Malliavin TE; Nicolas P; Delsuc MA J Biomol NMR; 2004 Sep; 30(1):47-60. PubMed ID: 15452434 [TBL] [Abstract][Full Text] [Related]
16. Intra- and intermolecular effects on 1H chemical shifts in a silk model Peptide determined by high-field solid state 1H NMR and empirical calculations. Suzuki Y; Takahashi R; Shimizu T; Tansho M; Yamauchi K; Williamson MP; Asakura T J Phys Chem B; 2009 Jul; 113(29):9756-61. PubMed ID: 19569641 [TBL] [Abstract][Full Text] [Related]
17. Probability-based protein secondary structure identification using combined NMR chemical-shift data. Wang Y; Jardetzky O Protein Sci; 2002 Apr; 11(4):852-61. PubMed ID: 11910028 [TBL] [Abstract][Full Text] [Related]
18. Structural characterization of Ca(2+)-ATPase-bound phospholamban in lipid bilayers by solid-state nuclear magnetic resonance (NMR) spectroscopy. Seidel K; Andronesi OC; Krebs J; Griesinger C; Young HS; Becker S; Baldus M Biochemistry; 2008 Apr; 47(15):4369-76. PubMed ID: 18355039 [TBL] [Abstract][Full Text] [Related]
19. NMR chemical shifts of the rhodopsin chromophore in the dark state and in bathorhodopsin: a hybrid QM/MM molecular dynamics study. Röhrig UF; Sebastiani D J Phys Chem B; 2008 Jan; 112(4):1267-74. PubMed ID: 18177030 [TBL] [Abstract][Full Text] [Related]
20. Accurate and automated classification of protein secondary structure with PsiCSI. Hung LH; Samudrala R Protein Sci; 2003 Feb; 12(2):288-95. PubMed ID: 12538892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]