BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 19231194)

  • 1. High dose erythropoietin promotes functional recovery of rats following facial nerve crush.
    Zhang W; Sun B; Yu Z; An J; Liu Q; Ren T
    J Clin Neurosci; 2009 Apr; 16(4):554-6. PubMed ID: 19231194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythropoietin enhances survival of facial motor neurons by inhibiting expression of inducible nitric oxide synthase after axotomy.
    Zhang W; Sun B; Wang X; Liu J; Zhang Z; Geng S
    J Clin Neurosci; 2010 Mar; 17(3):368-71. PubMed ID: 20089409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agmatine treatment and vein graft reconstruction enhance recovery after experimental facial nerve injury.
    Berenholz L; Segal S; Gilad VH; Klein C; Yehezkeli E; Eviatar E; Kessler A; Gilad GM
    J Peripher Nerv Syst; 2005 Sep; 10(3):319-28. PubMed ID: 16221291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The action of topical basic fibroblast growth factor in facial nerve regeneration.
    Toledo RN; Borin A; Cruz OL; Ho PL; Testa JR; Fukuda Y
    Otol Neurotol; 2010 Apr; 31(3):498-505. PubMed ID: 19887987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythropoietin promotes the recovery of erectile function following cavernous nerve injury.
    Allaf ME; Hoke A; Burnett AL
    J Urol; 2005 Nov; 174(5):2060-4. PubMed ID: 16217394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythropoietin prevents long-term sensorimotor deficits and brain injury following neonatal hypoxia-ischemia in rats.
    Spandou E; Papadopoulou Z; Soubasi V; Karkavelas G; Simeonidou C; Pazaiti A; Guiba-Tziampiri O
    Brain Res; 2005 May; 1045(1-2):22-30. PubMed ID: 15910759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The efficacy of erythropoietin on acute spinal cord injury. An experimental study on a rat model.
    Kontogeorgakos VA; Voulgaris S; Korompilias AV; Vekris M; Polyzoidis KS; Bourantas K; Beris AE
    Arch Orthop Trauma Surg; 2009 Feb; 129(2):189-94. PubMed ID: 18309506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of extratemporal and intratemporal facial nerve injury models.
    Sharma N; Cunningham K; Porter RG; Marzo SJ; Jones KJ; Foecking EM
    Laryngoscope; 2009 Dec; 119(12):2324-30. PubMed ID: 19718755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery from facial paralysis following crush injury of the facial nerve in hamsters: differential effects of gender and androgen exposure.
    Jones KJ
    Exp Neurol; 1993 May; 121(1):133-8. PubMed ID: 8495708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interleukin-1 beta promotes functional recovery of crushed peripheral nerve.
    Korompilias AV; Chen LE; Seaber AV; Urbaniak JR
    J Orthop Res; 1999 Sep; 17(5):714-9. PubMed ID: 10569481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of corticosteroids on functional recovery and neuron survival after facial nerve injury in mice.
    Lieberman DM; Jan TA; Ahmad SO; Most SP
    Arch Facial Plast Surg; 2011; 13(2):117-24. PubMed ID: 21079107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel neurotrophic therapeutic strategy for experimental stroke.
    Belayev L; Khoutorova L; Zhao KL; Davidoff AW; Moore AF; Cramer SC
    Brain Res; 2009 Jul; 1280():117-23. PubMed ID: 19463796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of FK506 on functional recovery after facial nerve injury in the rat.
    Yeh C; Bowers D; Hadlock TA
    Arch Facial Plast Surg; 2007; 9(5):333-9. PubMed ID: 17875826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroprotection by erythropoietin administration after experimental traumatic brain injury.
    Grasso G; Sfacteria A; Meli F; Fodale V; Buemi M; Iacopino DG
    Brain Res; 2007 Nov; 1182():99-105. PubMed ID: 17935704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical stimulation facilitates rat facial nerve recovery from a crush injury.
    Lal D; Hetzler LT; Sharma N; Wurster RD; Marzo SJ; Jones KJ; Foecking EM
    Otolaryngol Head Neck Surg; 2008 Jul; 139(1):68-73. PubMed ID: 18585564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombinant human erythropoietin decreases myeloperoxidase and caspase-3 activity and improves early functional results after spinal cord injury in rats.
    Okutan O; Solaroglu I; Beskonakli E; Taskin Y
    J Clin Neurosci; 2007 Apr; 14(4):364-8. PubMed ID: 17236773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced functional deficits, neuroinflammation, and secondary tissue damage after treatment of stroke by nonerythropoietic erythropoietin derivatives.
    Villa P; van Beek J; Larsen AK; Gerwien J; Christensen S; Cerami A; Brines M; Leist M; Ghezzi P; Torup L
    J Cereb Blood Flow Metab; 2007 Mar; 27(3):552-63. PubMed ID: 16835629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the systemic use of riluzole in post-traumatic facial nerve regeneration: experimental study in rabbits.
    Costa HJ; da Silva CF; Costa MP; Lazarini PR
    Acta Otolaryngol; 2007 Nov; 127(11):1222-5. PubMed ID: 17851939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protection of erythropoietin on experimental spinal cord injury by reducing the expression of thrombospondin-1 and transforming growth factor-beta.
    Fang XQ; Fang M; Fan SW; Gu CL
    Chin Med J (Engl); 2009 Jul; 122(14):1631-5. PubMed ID: 19719963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of chronic and short-term erythropoietin treatment on random flap survival in rats: an experimental study.
    Saray A; Ozakpinar R; Koc C; Serel S; Sen Z; Can Z
    Laryngoscope; 2003 Jan; 113(1):85-9. PubMed ID: 12514388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.