These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 19231272)

  • 1. Developmental genetics of floral symmetry evolution.
    Preston JC; Hileman LC
    Trends Plant Sci; 2009 Mar; 14(3):147-54. PubMed ID: 19231272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floral zygomorphy, the recurring evolution of a successful trait.
    Cubas P
    Bioessays; 2004 Nov; 26(11):1175-84. PubMed ID: 15499590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae).
    Hileman LC; Baum DA
    Mol Biol Evol; 2003 Apr; 20(4):591-600. PubMed ID: 12679544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Duplications and expression of DIVARICATA-like genes in dipsacales.
    Howarth DG; Donoghue MJ
    Mol Biol Evol; 2009 Jun; 26(6):1245-58. PubMed ID: 19289599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary developmental genetics of floral symmetry: the revealing power of Linnaeus' monstrous flower.
    Theissen G
    Bioessays; 2000 Mar; 22(3):209-13. PubMed ID: 10684579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the independent evolution of the size of floral organs via G-matrix estimation and artificial selection.
    Delph LF; Frey FM; Steven JC; Gehring JL
    Evol Dev; 2004; 6(6):438-48. PubMed ID: 15509226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of petal shape and floral zygomorphy in Lotus japonicus.
    Feng X; Zhao Z; Tian Z; Xu S; Luo Y; Cai Z; Wang Y; Yang J; Wang Z; Weng L; Chen J; Zheng L; Guo X; Luo J; Sato S; Tabata S; Ma W; Cao X; Hu X; Sun C; Luo D
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):4970-5. PubMed ID: 16549774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in expression pattern of the teosinte branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order.
    Bartlett ME; Specht CD
    Am J Bot; 2011 Feb; 98(2):227-43. PubMed ID: 21613112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of CYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry.
    Citerne HL; Reyes E; Le Guilloux M; Delannoy E; Simonnet F; Sauquet H; Weston PH; Nadot S; Damerval C
    Ann Bot; 2017 Feb; 119(3):367-378. PubMed ID: 28025288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae.
    Damerval C; Le Guilloux M; Jager M; Charon C
    Plant Physiol; 2007 Feb; 143(2):759-72. PubMed ID: 17189327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of petal identity.
    Irish VF
    J Exp Bot; 2009; 60(9):2517-27. PubMed ID: 19443615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata.
    Rudall PJ; Bateman RM
    Trends Plant Sci; 2003 Feb; 8(2):76-82. PubMed ID: 12597874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the TCP gene family in Asteridae: cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution.
    Reeves PA; Olmstead RG
    Mol Biol Evol; 2003 Dec; 20(12):1997-2009. PubMed ID: 12885953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives.
    Gubitz T; Caldwell A; Hudson A
    Mol Biol Evol; 2003 Sep; 20(9):1537-44. PubMed ID: 12832647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies.
    Preston JC; Kost MA; Hileman LC
    New Phytol; 2009; 182(3):751-762. PubMed ID: 19291006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae.
    Citerne HL; Luo D; Pennington RT; Coen E; Cronk QC
    Plant Physiol; 2003 Mar; 131(3):1042-53. PubMed ID: 12644657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural selection on Erysimum mediohispanicum flower shape: insights into the evolution of zygomorphy.
    Gómez JM; Perfectti F; Camacho JP
    Am Nat; 2006 Oct; 168(4):531-45. PubMed ID: 17004224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of regulatory interactions controlling floral asymmetry.
    Costa MM; Fox S; Hanna AI; Baxter C; Coen E
    Development; 2005 Nov; 132(22):5093-101. PubMed ID: 16236768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae).
    Zhou XR; Wang YZ; Smith JF; Chen R
    New Phytol; 2008; 178(3):532-43. PubMed ID: 18312540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking floral symmetry genes to breeding system evolution.
    Kalisz S; Ree RH; Sargent RD
    Trends Plant Sci; 2006 Dec; 11(12):568-73. PubMed ID: 17097332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.