These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19231822)

  • 1. Superlong beta-AgVO3 nanoribbons: high-yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties.
    Song JM; Lin YZ; Yao HB; Fan FJ; Li XG; Yu SH
    ACS Nano; 2009 Mar; 3(3):653-60. PubMed ID: 19231822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures.
    Zhang S; Li W; Li C; Chen J
    J Phys Chem B; 2006 Dec; 110(49):24855-63. PubMed ID: 17149905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and electrical transport of single-crystal NH4V3O8 nanobelts.
    Mai LQ; Lao CS; Hu B; Zhou J; Qi YY; Chen W; Gu ED; Wang ZL
    J Phys Chem B; 2006 Sep; 110(37):18138-41. PubMed ID: 16970427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralong silver trimolybdate nanowires: synthesis, phase transformation, stability, and their photocatalytic, optical, and electrical properties.
    Feng M; Zhang M; Song JM; Li XG; Yu SH
    ACS Nano; 2011 Aug; 5(8):6726-35. PubMed ID: 21770453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large scale synthesis of tellurium nanoribbons in tetraethylene pentamine aqueous solution and the stability of tellurium nanoribbons in ethanol and water.
    He Z; Yu SH
    J Phys Chem B; 2005 Dec; 109(48):22740-5. PubMed ID: 16853963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-crystalline molybdenum trioxide nanoribbons: photocatalytic, photoconductive, and electrochemical properties.
    Cheng L; Shao M; Wang X; Hu H
    Chemistry; 2009; 15(10):2310-6. PubMed ID: 19156810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the growth of single crystalline nanoribbons of copper tetracyanoquinodimethane for the fabrication of devices and device arrays.
    Liu Y; Li H; Tu D; Ji Z; Wang C; Tang Q; Liu M; Hu W; Liu Y; Zhu D
    J Am Chem Soc; 2006 Oct; 128(39):12917-22. PubMed ID: 17002388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and growth mechanism of Bi2S3 nanoribbons.
    Liu Z; Liang J; Li S; Peng S; Qian Y
    Chemistry; 2004 Feb; 10(3):634-40. PubMed ID: 14767927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribbon- and boardlike nanostructures of nickel hydroxide: synthesis, characterization, and electrochemical properties.
    Yang D; Wang R; He M; Zhang J; Liu Z
    J Phys Chem B; 2005 Apr; 109(16):7654-8. PubMed ID: 16851888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and optical properties of CdS nanoribbons.
    Kar S; Satpati B; Satyam PV; Chaudhuri S
    J Phys Chem B; 2005 Oct; 109(41):19134-8. PubMed ID: 16853467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-quality ultralong Sb2S3 nanoribbons on large scale.
    Yu Y; Wang RH; Chen Q; Peng LM
    J Phys Chem B; 2005 Dec; 109(49):23312-5. PubMed ID: 16375299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties.
    Li Q; Zhang J; Liu B; Li M; Liu R; Li X; Ma H; Yu S; Wang L; Zou Y; Li Z; Zou B; Cui T; Zou G
    Inorg Chem; 2008 Nov; 47(21):9870-3. PubMed ID: 18837547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal phthalocyanine nanoribbons and nanowires.
    Tong WY; Djurisić AB; Xie MH; Ng AC; Cheung KY; Chan WK; Leung YH; Lin HW; Gwo S
    J Phys Chem B; 2006 Sep; 110(35):17406-13. PubMed ID: 16942077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single beta-AgVO3 nanowire H2S sensor.
    Mai L; Xu L; Gao Q; Han C; Hu B; Pi Y
    Nano Lett; 2010 Jul; 10(7):2604-8. PubMed ID: 20503986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Yield Growth and Tunable Morphology of Bi
    Sondors R; Kunakova G; Jasulaneca L; Andzane J; Kauranens E; Bechelany M; Erts D
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution synthesis of ultrathin single-crystalline SnS nanoribbons for photodetectors via phase transition and surface processing.
    Deng Z; Cao D; He J; Lin S; Lindsay SM; Liu Y
    ACS Nano; 2012 Jul; 6(7):6197-207. PubMed ID: 22738287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Fe3S4 flower-like microspheres: high-yield synthesis via a biomolecule-assisted solution approach, their electrical, magnetic and electrochemical hydrogen storage properties.
    Cao F; Hu W; Zhou L; Shi W; Song S; Lei Y; Wang S; Zhang H
    Dalton Trans; 2009 Nov; (42):9246-52. PubMed ID: 20449202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-quality ultralong Sb2Se3 and Sb2S3 nanoribbons on a large scale via a simple chemical route.
    Yu Y; Wang RH; Chen Q; Peng LM
    J Phys Chem B; 2006 Jul; 110(27):13415-9. PubMed ID: 16821864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel.
    Liu Q; Zhou Y; Kou J; Chen X; Tian Z; Gao J; Yan S; Zou Z
    J Am Chem Soc; 2010 Oct; 132(41):14385-7. PubMed ID: 20866065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and electrochemical reaction with lithium of mesoporous iron oxalate nanoribbons.
    Aragón MJ; León B; Pérez Vicente C; Tirado JL
    Inorg Chem; 2008 Nov; 47(22):10366-71. PubMed ID: 18847258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.