BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19231823)

  • 1. Fluorescence enhancement by Au nanostructures: nanoshells and nanorods.
    Bardhan R; Grady NK; Cole JR; Joshi A; Halas NJ
    ACS Nano; 2009 Mar; 3(3):744-52. PubMed ID: 19231823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous silver-coated nanoparticle substrates for enhanced fluorescence detection.
    Xie F; Baker MS; Goldys EM
    J Phys Chem B; 2006 Nov; 110(46):23085-91. PubMed ID: 17107148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorophore-gold nanoparticle complex for sensitive optical biosensing and imaging.
    Wang J; Moore J; Laulhe S; Nantz M; Achilefu S; Kang KA
    Nanotechnology; 2012 Mar; 23(9):095501. PubMed ID: 22327387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct fluorimetric determination of gamma-globulin in human serum with organic nanoparticle biosensor.
    Wang L; Wang L; Dong L; Bian G; Xia T; Chen H
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(1-2):129-33. PubMed ID: 15556430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatible, nanogold-particle fluorescence enhancer for fluorophore mediated, optical immunosensor.
    Hong B; Kang KA
    Biosens Bioelectron; 2006 Jan; 21(7):1333-8. PubMed ID: 15935635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence lifetime spectroscopy and imaging of nano-engineered glucose sensor microcapsules based on glucose/galactose-binding protein.
    Saxl T; Khan F; Matthews DR; Zhi ZL; Rolinski O; Ameer-Beg S; Pickup J
    Biosens Bioelectron; 2009 Jul; 24(11):3229-34. PubMed ID: 19442507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single fluorescent gold nanoclusters.
    Yuan CT; Chou WC; Tang J; Lin CA; Chang WH; Shen JL; Chuu DS
    Opt Express; 2009 Aug; 17(18):16111-8. PubMed ID: 19724611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering.
    Kim JH; Kang T; Yoo SM; Lee SY; Kim B; Choi YK
    Nanotechnology; 2009 Jun; 20(23):235302. PubMed ID: 19448293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle strategies for enhancing the sensitivity of fluorescence-based biochips.
    McDonagh C; Stranik O; Nooney R; Maccraith BD
    Nanomedicine (Lond); 2009 Aug; 4(6):645-56. PubMed ID: 19663593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatible heterostructured nanoparticles for multimodal biological detection.
    Choi JS; Jun YW; Yeon SI; Kim HC; Shin JS; Cheon J
    J Am Chem Soc; 2006 Dec; 128(50):15982-3. PubMed ID: 17165720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence properties of gold nanorods and their application for DNA biosensing.
    Li CZ; Male KB; Hrapovic S; Luong JH
    Chem Commun (Camb); 2005 Aug; (31):3924-6. PubMed ID: 16075073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Well-controlled synthesis of Au@Pt nanostructures by gold-nanorod-seeded growth.
    Feng L; Wu X; Ren L; Xiang Y; He W; Zhang K; Zhou W; Xie S
    Chemistry; 2008; 14(31):9764-71. PubMed ID: 18773406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures.
    Hu KW; Liu TM; Chung KY; Huang KS; Hsieh CT; Sun CK; Yeh CS
    J Am Chem Soc; 2009 Oct; 131(40):14186-7. PubMed ID: 19772320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly luminescent zinc(II)-bis(8-hydroxyquinoline) complex nanorods: sonochemical synthesis, characterizations, and protein sensing.
    Pan HC; Liang FP; Mao CJ; Zhu JJ; Chen HY
    J Phys Chem B; 2007 May; 111(20):5767-72. PubMed ID: 17461570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directly monitoring the growth of gold nanoparticle seeds into gold nanorods.
    Wei Z; Zamborini FP
    Langmuir; 2004 Dec; 20(26):11301-4. PubMed ID: 15595748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced flow cytometry-based bead immunoassays using metal nanostructures.
    Deng W; Drozdowicz-Tomsia K; Jin D; Goldys EM
    Anal Chem; 2009 Sep; 81(17):7248-55. PubMed ID: 19715357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale control of near-infrared fluorescence enhancement using Au nanoshells.
    Bardhan R; Grady NK; Halas NJ
    Small; 2008 Oct; 4(10):1716-22. PubMed ID: 18819167
    [No Abstract]   [Full Text] [Related]  

  • 19. Measuring the fluorescent quantum efficiency of indocyanine green encapsulated in nanocomposite particulates.
    Russin TJ; Altınoğlu Eİ; Adair JH; Eklund PC
    J Phys Condens Matter; 2010 Aug; 22(33):334217. PubMed ID: 21386507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods.
    Cheng FY; Chen CT; Yeh CS
    Nanotechnology; 2009 Oct; 20(42):425104. PubMed ID: 19779243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.