These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19231876)

  • 1. Characterization of emulsification at flat microchannel Y junctions.
    Steegmans ML; Schroën KG; Boom RM
    Langmuir; 2009 Apr; 25(6):3396-401. PubMed ID: 19231876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic interfacial tension measurements with microfluidic Y-junctions.
    Steegmans ML; Warmerdam A; Schroën KG; Boom RM
    Langmuir; 2009 Sep; 25(17):9751-8. PubMed ID: 19583180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A geometric model for the dynamics of microchannel emulsification.
    van der Zwan E; Schroën K; Boom R
    Langmuir; 2009 Jul; 25(13):7320-7. PubMed ID: 19563224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces.
    Christov NC; Danov KD; Danova DK; Kralchevsky PA
    Langmuir; 2008 Feb; 24(4):1397-410. PubMed ID: 17963414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emulsification in turbulent flow: 3. Daughter drop-size distribution.
    Tcholakova S; Vankova N; Denkov ND; Danner T
    J Colloid Interface Sci; 2007 Jun; 310(2):570-89. PubMed ID: 17376472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel.
    van der Graaf S; Nisisako T; Schroën CG; van der Sman RG; Boom RM
    Langmuir; 2006 Apr; 22(9):4144-52. PubMed ID: 16618157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force balance conditions for droplet formation in cross-flow membrane emulsifications.
    De Luca G; Drioli E
    J Colloid Interface Sci; 2006 Feb; 294(2):436-48. PubMed ID: 16139285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical study on the coalescence of emulsion droplets in a constricted capillary tube.
    Yan L; Thompson KE; Valsaraj KT
    J Colloid Interface Sci; 2006 Jun; 298(2):832-44. PubMed ID: 16483593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic forces acting on a microscopic emulsion drop growing at a capillary tip in relation to the process of membrane emulsification.
    Danov KD; Danova DK; Kralchevsky PA
    J Colloid Interface Sci; 2007 Dec; 316(2):844-57. PubMed ID: 17900600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pickering emulsions stabilized by paraffin wax and Laponite clay particles.
    Li C; Liu Q; Mei Z; Wang J; Xu J; Sun D
    J Colloid Interface Sci; 2009 Aug; 336(1):314-21. PubMed ID: 19428022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the Surface Evolver to model droplet formation processes in membrane emulsification.
    Rayner M; Trägårdh G; Trägårdh C; Dejmek P
    J Colloid Interface Sci; 2004 Nov; 279(1):175-85. PubMed ID: 15380427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The life of an anise-flavored alcoholic beverage: does its stability cloud or confirm theory?
    Scholten E; Linden Ev; This H
    Langmuir; 2008 Mar; 24(5):1701-6. PubMed ID: 18215078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets.
    Yobas L; Martens S; Ong WL; Ranganathan N
    Lab Chip; 2006 Aug; 6(8):1073-9. PubMed ID: 16874381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities.
    Jakiela S; Makulska S; Korczyk PM; Garstecki P
    Lab Chip; 2011 Nov; 11(21):3603-8. PubMed ID: 21909516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled generation of monodisperse discoid droplets using microchannel arrays.
    Kobayashi I; Uemura K; Nakajima M
    Langmuir; 2006 Dec; 22(26):10893-7. PubMed ID: 17154559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of interfacial tension on the dynamic behavior of droplet formation during microchannel emulsification.
    Sugiura S; Nakajima M; Oda T; Satake M; Seki M
    J Colloid Interface Sci; 2004 Jan; 269(1):178-85. PubMed ID: 14651911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions.
    Christopher GF; Noharuddin NN; Taylor JA; Anna SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036317. PubMed ID: 18851153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size.
    Zagnoni M; Cooper JM
    Lab Chip; 2009 Sep; 9(18):2652-8. PubMed ID: 19704980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Boltzmann simulations of droplet formation during microchannel emulsification.
    van der Zwan E; van der Sman R; Schroën K; Boom R
    J Colloid Interface Sci; 2009 Jul; 335(1):112-22. PubMed ID: 19398107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.