BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19232351)

  • 1. Effect of Bacillus thuringiensis naturally colonising Brassica campestris var. chinensis leaves on neonate larvae of Pieris brassicae.
    Prabhakar A; Bishop AH
    J Invertebr Pathol; 2009 Mar; 100(3):193-4. PubMed ID: 19232351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ecology of Bacillus thuringiensis on the Phylloplane: colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassicae.
    Bizzarri MF; Bishop AH
    Microb Ecol; 2008 Jul; 56(1):133-9. PubMed ID: 17973155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate of Bacillus thuringiensis strains in different insect larvae.
    Suzuki MT; Lereclus D; Arantes OM
    Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural occurrence of Bacillus thuringiensis on cabbage foliage and in insects associated with cabbage crops.
    Damgaard PH; Hansen BM; Pedersen JC; Eilenberg J
    J Appl Microbiol; 1997 Feb; 82(2):253-8. PubMed ID: 12452602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A recombinant immunosuppressive protein from Pimpla hypochondriaca (rVPr1) increases the susceptibility of Lacanobia oleracea and Mamestra brassicae larvae to Bacillus thuringiensis.
    Richards EH; Paulina Dani M
    J Invertebr Pathol; 2010 May; 104(1):51-7. PubMed ID: 20123105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal bacteria affect growth of Bacillus thuringiensis in larvae of the oriental tea tortrix, Homona magnanima diakonoff (Lepidoptera: tortricidae).
    Takatsuka J; Kunimi Y
    J Invertebr Pathol; 2000 Oct; 76(3):222-6. PubMed ID: 11023751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between Bacillus thuringiensis subsp. kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm.
    van Frankenhuyzen K; Liu Y; Tonon A
    J Invertebr Pathol; 2010 Feb; 103(2):124-31. PubMed ID: 20035766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenolics metabolism in insects: Pieris brassicae-Brassica oleracea var. costata ecological duo.
    Ferreres F; Fernandes F; Pereira DM; Pereira JA; Valentão P; Andrade PB
    J Agric Food Chem; 2009 Oct; 57(19):9035-43. PubMed ID: 19764727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immigration of Bacillus thuringiensis to bean leaves from soil inoculum or distal plant parts.
    Maduell P; Armengol G; Llagostera M; Lindow S; Orduz S
    J Appl Microbiol; 2007 Dec; 103(6):2593-600. PubMed ID: 18045443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the reproduction of Bacillus thuringiensis HD1 in cadavers and live larvae of Plutella xylostella.
    Raymond B; Elliot SL; Ellis RJ
    J Invertebr Pathol; 2008 Jul; 98(3):307-13. PubMed ID: 18336832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biochemical diagnosis of the presence of poisoning by Bacillus thuringiensis serotype "H3a,3b" in two lepidopterans].
    Valéro JR; Letarte R
    Can J Microbiol; 1989 Apr; 35(4):444-9. PubMed ID: 2743217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential crop damage by healthy and nucleopolyhedrovirus-infected Mamestra brassicae L. (Lepidoptera: Noctuidae) larvae: a field examination.
    Vasconcelos SD; Hails RS; Speight MR; Cory JS
    J Invertebr Pathol; 2005 Feb; 88(2):177-9. PubMed ID: 15766936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Bacillus thuringiensis: general aspects. An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests].
    Sauka DH; Benintende GB
    Rev Argent Microbiol; 2008; 40(2):124-40. PubMed ID: 18705497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frass failure and pupation failure as quantal measurements of Bacillus thuringiensis toxicity to Lepidoptera.
    Van Frankenhuyzen K; Gringorten JL
    J Invertebr Pathol; 1991 Nov; 58(3):465-7. PubMed ID: 1787331
    [No Abstract]   [Full Text] [Related]  

  • 15. Potentiation of insecticidal activity of Bacillus thuringiensis subsp. kurstaki HD-1 by proteinase inhibitors in the American bollworm, Helicoverpa armigera (Hübner).
    Gujar T; Kalia V; Kumari A; Prasad TV
    Indian J Exp Biol; 2004 Feb; 42(2):157-63. PubMed ID: 15282948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mutation R(423)S in the Bacillus thuringiensis hybrid toxin CryAAC slightly increases toxicity for Mamestra brassicae L.
    Ayra-Pardo C; Davis P; Ellar DJ
    J Invertebr Pathol; 2007 May; 95(1):41-7. PubMed ID: 17306294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pieris brassicae inhibits xanthine oxidase.
    Sousa C; Pereira DM; Valentão P; Ferreres F; Pereira JA; Seabra RM; Andrade PB
    J Agric Food Chem; 2009 Mar; 57(6):2288-94. PubMed ID: 19227975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants.
    Monnerat RG; Soares CM; Capdeville G; Jones G; Martins ES; Praça L; Cordeiro BA; Braz SV; dos Santos RC; Berry C
    Microb Biotechnol; 2009 Jul; 2(4):512-20. PubMed ID: 21255282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial ecology of Bacillus thuringiensis: fecal populations recovered from wildlife in Korea.
    Lee DH; Cha IH; Woo DS; Ohba M
    Can J Microbiol; 2003 Jul; 49(7):465-71. PubMed ID: 14569287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effects of Bacillus thuringiensis on the greater wax moth, Galleria mellonella (L.) (Lepidoptera: Galleriidae)].
    Boşgelmez A; Cakmakçi L; Gürkan B; Gürkan F; Cetinkaya G
    Mikrobiyol Bul; 1983 Oct; 17(4):233-42. PubMed ID: 6669083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.