These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 19232360)
1. Mathematical modelling of the Warburg effect in tumour cords. Astanin S; Preziosi L J Theor Biol; 2009 Jun; 258(4):578-90. PubMed ID: 19232360 [TBL] [Abstract][Full Text] [Related]
2. An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. Rejniak KA J Theor Biol; 2007 Jul; 247(1):186-204. PubMed ID: 17416390 [TBL] [Abstract][Full Text] [Related]
4. Modelling cell population growth with applications to cancer therapy in human tumour cell lines. Basse B; Baguley BC; Marshall ES; Wake GC; Wall DJ Prog Biophys Mol Biol; 2004; 85(2-3):353-68. PubMed ID: 15142752 [TBL] [Abstract][Full Text] [Related]
5. Simulating growth dynamics and radiation response of avascular tumour spheroids-model validation in the case of an EMT6/Ro multicellular spheroid. Zacharaki EI; Stamatakos GS; Nikita KS; Uzunoglu NK Comput Methods Programs Biomed; 2004 Dec; 76(3):193-206. PubMed ID: 15501506 [TBL] [Abstract][Full Text] [Related]
6. Regression and regrowth of tumour cords following single-dose anticancer treatment. Bertuzzi A; D'Onofrio A; Fasano A; Gandolfi A Bull Math Biol; 2003 Sep; 65(5):903-31. PubMed ID: 12909255 [TBL] [Abstract][Full Text] [Related]
7. The role of cell-cell interactions in a two-phase model for avascular tumour growth. Breward CJ; Byrne HM; Lewis CE J Math Biol; 2002 Aug; 45(2):125-52. PubMed ID: 12181602 [TBL] [Abstract][Full Text] [Related]
8. Modelling the cell cycle and cell movement in multicellular tumour spheroids. Tindall MJ; Please CP Bull Math Biol; 2007 May; 69(4):1147-65. PubMed ID: 17372784 [TBL] [Abstract][Full Text] [Related]
9. Chemotherapy may be delivered based on an integrated view of tumour dynamics. Ribba B; You B; Tod M; Girard P; Tranchand B; Trillet-Lenoir V; Freyer G IET Syst Biol; 2009 May; 3(3):180-90. PubMed ID: 19449978 [TBL] [Abstract][Full Text] [Related]
10. A phenomenological approach to the simulation of metabolism and proliferation dynamics of large tumour cell populations. Chignola R; Milotti E Phys Biol; 2005 Mar; 2(1):8-22. PubMed ID: 16204852 [TBL] [Abstract][Full Text] [Related]
11. Modelling the balance between quiescence and cell death in normal and tumour cell populations. Spinelli L; Torricelli A; Ubezio P; Basse B Math Biosci; 2006 Aug; 202(2):349-70. PubMed ID: 16697424 [TBL] [Abstract][Full Text] [Related]
12. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Anderson AR Math Med Biol; 2005 Jun; 22(2):163-86. PubMed ID: 15781426 [TBL] [Abstract][Full Text] [Related]
13. Single-cell-based computer simulation of the oxygen-dependent tumour response to irradiation. Harting C; Peschke P; Borkenstein K; Karger CP Phys Med Biol; 2007 Aug; 52(16):4775-89. PubMed ID: 17671335 [TBL] [Abstract][Full Text] [Related]
14. A generalised age- and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies. Basse B; Ubezio P Bull Math Biol; 2007 Jul; 69(5):1673-90. PubMed ID: 17361361 [TBL] [Abstract][Full Text] [Related]
15. A multiphase model describing vascular tumour growth. Breward CJ; Byrne HM; Lewis CE Bull Math Biol; 2003 Jul; 65(4):609-40. PubMed ID: 12875336 [TBL] [Abstract][Full Text] [Related]
16. [Autowaves in a model of growth of an invasive tumor]. Kolobov AV; Gubernov VV; Polezhaev AA Biofizika; 2009; 54(2):334-42. PubMed ID: 19402546 [TBL] [Abstract][Full Text] [Related]
17. Modelling the formation of necrotic regions in avascular tumours. Tindall MJ; Please CP; Peddie MJ Math Biosci; 2008 Jan; 211(1):34-55. PubMed ID: 18082225 [TBL] [Abstract][Full Text] [Related]
18. Computer simulation of tumour cell invasion by a stochastic growth model. Smolle J; Stettner H J Theor Biol; 1993 Jan; 160(1):63-72. PubMed ID: 8474247 [TBL] [Abstract][Full Text] [Related]
19. Cell kinetics in a tumour cord. Bertuzzi A; Gandolfi A J Theor Biol; 2000 Jun; 204(4):587-99. PubMed ID: 10833358 [TBL] [Abstract][Full Text] [Related]
20. Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. Chaplain MA; Graziano L; Preziosi L Math Med Biol; 2006 Sep; 23(3):197-229. PubMed ID: 16648146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]