These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19232403)

  • 1. The roles of Na/Pi-II transporters in phosphate metabolism.
    Segawa H; Aranami F; Kaneko I; Tomoe Y; Miyamoto K
    Bone; 2009 Jul; 45 Suppl 1():S2-7. PubMed ID: 19232403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter.
    Miyamoto K; Ito M; Tatsumi S; Kuwahata M; Segawa H
    Am J Nephrol; 2007; 27(5):503-15. PubMed ID: 17687185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice.
    Myakala K; Motta S; Murer H; Wagner CA; Koesters R; Biber J; Hernando N
    Am J Physiol Renal Physiol; 2014 Apr; 306(8):F833-43. PubMed ID: 24553430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel NaPi-2c mutations that cause mistargeting of NaPi-2c protein and uncoupling of Na-Pi cotransport cause HHRH.
    Levi M
    Am J Physiol Renal Physiol; 2008 Aug; 295(2):F369-70. PubMed ID: 18524854
    [No Abstract]   [Full Text] [Related]  

  • 5. Renal phosphate handling in human--what can we learn from hereditary hypophosphataemias?
    Amatschek S; Haller M; Oberbauer R
    Eur J Clin Invest; 2010 Jun; 40(6):552-60. PubMed ID: 20412291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate transport: molecular basis, regulation and pathophysiology.
    Tenenhouse HS
    J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):572-7. PubMed ID: 17270430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel phosphate-regulating genes in the pathogenesis of renal phosphate wasting disorders.
    Tenenhouse HS; Sabbagh Y
    Pflugers Arch; 2002 Jun; 444(3):317-26. PubMed ID: 12111239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitamin D and type II sodium-dependent phosphate cotransporters.
    Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K
    Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney.
    Fujii T; Shiozaki Y; Segawa H; Nishiguchi S; Hanazaki A; Noguchi M; Kirino R; Sasaki S; Tanifuji K; Koike M; Yokoyama M; Arima Y; Kaneko I; Tatsumi S; Ito M; Miyamoto KI
    Clin Exp Nephrol; 2019 Mar; 23(3):313-324. PubMed ID: 30317447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization.
    Tenenhouse HS; Werner A; Biber J; Ma S; Martel J; Roy S; Murer H
    J Clin Invest; 1994 Feb; 93(2):671-6. PubMed ID: 8113402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular/molecular control of renal Na/Pi-cotransport.
    Murer H; Forster I; Hilfiker H; Pfister M; Kaissling B; Lötscher M; Biber J
    Kidney Int Suppl; 1998 Apr; 65():S2-10. PubMed ID: 9551425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development.
    Segawa H; Onitsuka A; Furutani J; Kaneko I; Aranami F; Matsumoto N; Tomoe Y; Kuwahata M; Ito M; Matsumoto M; Li M; Amizuka N; Miyamoto K
    Am J Physiol Renal Physiol; 2009 Sep; 297(3):F671-8. PubMed ID: 19570882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of proximal tubular apical Na/Pi cotransport.
    Murer H; Biber J
    Exp Nephrol; 1996; 4(4):201-4. PubMed ID: 8864723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.
    Villa-Bellosta R; Sorribas V
    Toxicol Appl Pharmacol; 2008 Oct; 232(1):125-34. PubMed ID: 18586044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Regulation of phosphate balance in the kidney].
    Inishi Y; Hase H
    Clin Calcium; 2005 Jul; 15(7):115-8. PubMed ID: 15995306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcineurin Abeta is central to the expression of the renal type II Na/Pi co-transporter gene and to the regulation of renal phosphate transport.
    Moz Y; Levi R; Lavi-Moshayoff V; Cox KB; Molkentin JD; Silver J; Naveh-Many T
    J Am Soc Nephrol; 2004 Dec; 15(12):2972-80. PubMed ID: 15579499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hereditary hypophosphatemic rickets with hypercalciuria: case report.
    Areses-Trapote R; López-García JA; Ubetagoyena-Arrieta M; Eizaguirre A; Sáez-Villaverde R
    Nefrologia; 2012 Jul; 32(4):529-34. PubMed ID: 22806288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal phosphate handling and inherited disorders of phosphate reabsorption: an update.
    Wagner CA; Rubio-Aliaga I; Hernando N
    Pediatr Nephrol; 2019 Apr; 34(4):549-559. PubMed ID: 29275531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the renal type IIa Na/Pi cotransporter by cGMP.
    Bacic D; Hernando N; Traebert M; Lederer E; Völkl H; Biber J; Kaissling B; Murer H
    Pflugers Arch; 2001 Nov; 443(2):306-13. PubMed ID: 11713658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of microtubules in the rapid regulation of renal phosphate transport in response to acute alterations in dietary phosphate content.
    Lötscher M; Kaissling B; Biber J; Murer H; Levi M
    J Clin Invest; 1997 Mar; 99(6):1302-12. PubMed ID: 9077540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.