BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 19232407)

  • 21. Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline.
    Rako L; Blacket MJ; McKechnie SW; Hoffmann AA
    Mol Ecol; 2007 Jul; 16(14):2948-57. PubMed ID: 17614909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A family of Turandot-related genes in the humoral stress response of Drosophila.
    Ekengren S; Hultmark D
    Biochem Biophys Res Commun; 2001 Jun; 284(4):998-1003. PubMed ID: 11409894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coordinated evolution of co-expressed gene clusters in the Drosophila transcriptome.
    Mezey JG; Nuzhdin SV; Ye F; Jones CD
    BMC Evol Biol; 2008 Jan; 8():2. PubMed ID: 18179715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane lipid physiology and toxin catabolism underlie ethanol and acetic acid tolerance in Drosophila melanogaster.
    Montooth KL; Siebenthall KT; Clark AG
    J Exp Biol; 2006 Oct; 209(Pt 19):3837-50. PubMed ID: 16985200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection.
    Gerken AR; Mackay TF; Morgan TJ
    J Therm Biol; 2016 Jul; 59():77-85. PubMed ID: 27264892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Knocking down expression of Hsp22 and Hsp23 by RNA interference affects recovery from chill coma in Drosophila melanogaster.
    Colinet H; Lee SF; Hoffmann A
    J Exp Biol; 2010 Dec; 213(Pt 24):4146-50. PubMed ID: 21112994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Response to selection for rapid chill-coma recovery in Drosophila melanogaster: physiology and life-history traits.
    Anderson AR; Hoffmann AA; McKechnie SW
    Genet Res; 2005 Feb; 85(1):15-22. PubMed ID: 16089033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics of genes up-regulated and down-regulated after 24 h starvation in the head of Drosophila.
    Fujikawa K; Takahashi A; Nishimura A; Itoh M; Takano-Shimizu T; Ozaki M
    Gene; 2009 Oct; 446(1):11-7. PubMed ID: 19573582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid decline of cold tolerance at young age is associated with expression of stress genes in Drosophila melanogaster.
    Colinet H; Siaussat D; Bozzolan F; Bowler K
    J Exp Biol; 2013 Jan; 216(Pt 2):253-9. PubMed ID: 22996448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative genomics of starvation stress resistance in Drosophila.
    Harbison ST; Chang S; Kamdar KP; Mackay TF
    Genome Biol; 2005; 6(4):R36. PubMed ID: 15833123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cold tolerance and cold-induced modulation of gene expression in two Drosophila virilis group species with different distributions.
    Vesala L; Salminen TS; Laiho A; Hoikkala A; Kankare M
    Insect Mol Biol; 2012 Feb; 21(1):107-18. PubMed ID: 22122733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent strong positive selection on Drosophila melanogaster HDAC6, a gene encoding a stress surveillance factor, as revealed by population genomic analysis.
    Svetec N; Pavlidis P; Stephan W
    Mol Biol Evol; 2009 Jul; 26(7):1549-56. PubMed ID: 19349642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster.
    Zhang J; Marshall KE; Westwood JT; Clark MS; Sinclair BJ
    J Exp Biol; 2011 Dec; 214(Pt 23):4021-9. PubMed ID: 22071194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rapid genome-wide response to Drosophila melanogaster social interactions.
    Carney GE
    BMC Genomics; 2007 Aug; 8():288. PubMed ID: 17714588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ADH enzyme activity and Adh gene expression in Drosophila melanogaster lines differentially selected for increased alcohol tolerance.
    Malherbe Y; Kamping A; van Delden W; van de Zande L
    J Evol Biol; 2005 Jul; 18(4):811-9. PubMed ID: 16033552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-resolution dynamics of the transcriptional response to nutrition in Drosophila: a key role for dFOXO.
    Gershman B; Puig O; Hang L; Peitzsch RM; Tatar M; Garofalo RS
    Physiol Genomics; 2007 Mar; 29(1):24-34. PubMed ID: 17090700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia.
    Hoffmann AA; Weeks AR
    Genetica; 2007 Feb; 129(2):133-47. PubMed ID: 16955331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple mechanisms limit the duration of wakefulness in Drosophila brain.
    Zimmerman JE; Rizzo W; Shockley KR; Raizen DM; Naidoo N; Mackiewicz M; Churchill GA; Pack AI
    Physiol Genomics; 2006 Nov; 27(3):337-50. PubMed ID: 16954408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new set of laboratory-selected Drosophila melanogaster lines for the analysis of desiccation resistance: response to selection, physiology and correlated responses.
    Telonis-Scott M; Guthridge KM; Hoffmann AA
    J Exp Biol; 2006 May; 209(Pt 10):1837-47. PubMed ID: 16651550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression and characterization of the PEBP homolog genes from Drosophila.
    Rautureau G; Jouvensal L; Vovelle F; Schoentgen F; Locker D; Decoville M
    Arch Insect Biochem Physiol; 2009 Jun; 71(2):55-69. PubMed ID: 19309003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.