BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

602 related articles for article (PubMed ID: 19232463)

  • 1. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger.
    Ren WX; Li PJ; Geng Y; Li XJ
    J Hazard Mater; 2009 Aug; 167(1-3):164-9. PubMed ID: 19232463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal removal from contaminated sludge for land application: a review.
    Babel S; del Mundo Dacera D
    Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of organic acids on the transport of heavy metals in soil.
    Schwab AP; Zhu DS; Banks MK
    Chemosphere; 2008 Jun; 72(6):986-94. PubMed ID: 18482743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of heavy metals from a contaminated soil using tartaric acid.
    Ke X; Li PJ; Zhou QX; Zhang Y; Sun TH
    J Environ Sci (China); 2006; 18(4):727-33. PubMed ID: 17078552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1.
    Deng X; Chai L; Yang Z; Tang C; Tong H; Yuan P
    J Hazard Mater; 2012 Sep; 233-234():25-32. PubMed ID: 22795840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China.
    Zhao X; Dong D; Hua X; Dong S
    J Hazard Mater; 2009 Oct; 170(2-3):570-7. PubMed ID: 19500903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1.
    Deng X; Chai L; Yang Z; Tang C; Wang Y; Shi Y
    J Hazard Mater; 2013 Mar; 248-249():107-14. PubMed ID: 23352906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans.
    Naresh Kumar R; Nagendran R
    J Hazard Mater; 2009 Sep; 169(1-3):1119-26. PubMed ID: 19464109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M; Khanlari ZV
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of heavy metal contaminated soil washing residues with amino polycarboxylic acids.
    Arwidsson Z; Elgh-Dalgren K; von Kronhelm T; Sjöberg R; Allard B; van Hees P
    J Hazard Mater; 2010 Jan; 173(1-3):697-704. PubMed ID: 19767142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciation and fractionation of heavy metals in soil experimentally contaminated with Pb, Cd, Cu and Zn together and effects on soil negative surface charge.
    Zhou DM; Hao XZ; Tu C; Chen HM; Si YB
    J Environ Sci (China); 2002 Oct; 14(4):439-44. PubMed ID: 12491715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes.
    Del Mundo Dacera D; Babel S
    Bioresour Technol; 2008 Apr; 99(6):1682-9. PubMed ID: 17512728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Performance of Bioleaching Combined with Fenton-like Reaction in Heavy Metals Removal from Contaminated Soil].
    Zhou PX; Yan X; Yu Z; Wang YQ; Zhu Y; Zhou SG
    Huan Jing Ke Xue; 2016 Sep; 37(9):3575-3581. PubMed ID: 29964795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances.
    Halim M; Conte P; Piccolo A
    Chemosphere; 2003 Jul; 52(1):265-75. PubMed ID: 12729711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of EDTA washing on the species and mobility of heavy metals residual in soils.
    Zhang W; Huang H; Tan F; Wang H; Qiu R
    J Hazard Mater; 2010 Jan; 173(1-3):369-76. PubMed ID: 19748734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of EDTA decontamination on soils affected by mining activities and impact of treatment on the geochemical partition of metal contaminants.
    Xia W; Gao H; Wang X; Zhou C; Liu Y; Fan T; Wang X
    J Hazard Mater; 2009 May; 164(2-3):936-40. PubMed ID: 18838220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of the BCR sequential extraction procedure for the study of metal availability to plants.
    Li J; Lu Y; Shim H; Deng X; Lian J; Jia Z; Li J
    J Environ Monit; 2010 Feb; 12(2):466-71. PubMed ID: 20145888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Process evaluation for optimization of EDTA use and recovery for heavy metal removal from a contaminated soil.
    Lim TT; Chui PC; Goh KH
    Chemosphere; 2005 Feb; 58(8):1031-40. PubMed ID: 15664611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.