BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 19232659)

  • 1. Semi-empirical bone model for determination of trabecular structure properties from backscattered ultrasound.
    Litniewski J; Nowicki A; Lewin PA
    Ultrasonics; 2009 Jun; 49(6-7):505-13. PubMed ID: 19232659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistics of the envelope of ultrasonic backscatter from human trabecular bone.
    Litniewski J; Cieslik L; Wojcik J; Nowicki A
    J Acoust Soc Am; 2011 Oct; 130(4):2224-32. PubMed ID: 21973377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic characterization of human trabecular bone microstructure.
    Hakulinen MA; Day JS; Töyräs J; Weinans H; Jurvelin JS
    Phys Med Biol; 2006 Mar; 51(6):1633-48. PubMed ID: 16510968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of dependence of backscatter coefficient from cylinders on frequency and diameter using focused transducers--with applications in trabecular bone.
    Wear KA
    J Acoust Soc Am; 2004 Jan; 115(1):66-72. PubMed ID: 14758996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase velocity analysis of acoustic propagation in trabecular bone.
    Villarreal A; Medina L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1332-5. PubMed ID: 21095931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone.
    Karjalainen JP; Töyräs J; Riekkinen O; Hakulinen M; Jurvelin JS
    Ultrasound Med Biol; 2009 Aug; 35(8):1376-84. PubMed ID: 19525060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range.
    Hakulinen MA; Day JS; Töyräs J; Timonen M; Kröger H; Weinans H; Kiviranta I; Jurvelin JS
    Phys Med Biol; 2005 Apr; 50(8):1629-42. PubMed ID: 15815086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of ultrasound propagation in random arrangements of elliptic scatterers: occurrence of two longitudinal waves.
    Mézière F; Muller M; Dobigny B; Bossy E; Derode A
    J Acoust Soc Am; 2013 Feb; 133(2):643-52. PubMed ID: 23363084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis.
    Goossens L; Vanderoost J; Jaecques S; Boonen S; D'hooge J; Lauriks W; Van der Perre G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1234-42. PubMed ID: 18599411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the biot model to ultrasound in bone: direct problem.
    Fellah ZA; Sebaa N; Fellah M; Mitri FG; Ogam E; Lauriks W; Depollier C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1508-15. PubMed ID: 18986940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic scanner for in vivo measurement of cancellous bone properties from backscattered data.
    Litniewski J; Cieslik L; Lewandowski M; Tymkiewicz R; Zienkiewicz B; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1470-7. PubMed ID: 22828842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cell spatial organization and size distribution on ultrasound backscattering.
    Saha RK; Kolios MC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2118-31. PubMed ID: 21989875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scattering by single physically large and weak scatterers in the beam of a single-element transducer.
    Kemmerer JP; Oelze ML; Gyöngy M
    J Acoust Soc Am; 2015 Mar; 137(3):1153-63. PubMed ID: 25786931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a numerical cancellous bone model for finite-difference time-domain simulations of ultrasound propagation.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1219-33. PubMed ID: 18599410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid volume fraction estimation of bone:marrow replica models using ultrasound transit time spectroscopy.
    Wille ML; Langton CM
    Ultrasonics; 2016 Feb; 65():329-37. PubMed ID: 26455950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of overlying soft tissues on trabecular bone acoustic measurement at various ultrasound frequencies.
    Riekkinen O; Hakulinen MA; Timonen M; Töyräs J; Jurvelin JS
    Ultrasound Med Biol; 2006 Jul; 32(7):1073-83. PubMed ID: 16829321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and analysis of multiple scattering of acoustic waves in complex media: application to the trabecular bone.
    Wojcik J; Litniewski J; Nowicki A
    J Acoust Soc Am; 2011 Oct; 130(4):1908-18. PubMed ID: 21973345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the spatial autocorrelation function for ultrasound scatterers in isotropic media.
    Chen JF; Zagzebski JA; Dong F; Madsen EL
    Med Phys; 1998 May; 25(5):648-55. PubMed ID: 9608474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artifact reduction of ultrasound Nakagami imaging by combining multifocus image reconstruction and the noise-assisted correlation algorithm.
    Tsui PH; Tsai YW
    Ultrason Imaging; 2015 Jan; 37(1):53-69. PubMed ID: 24626567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative ultrasound estimates from populations of scatterers with continuous size distributions.
    Lavarello R; Oelze M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):744-53. PubMed ID: 21507752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.