These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 19233555)

  • 1. Removal of chromium (III) by two-aqueous phases extraction.
    Rim SA; Amine DM; Nasr-Eddine B; Canselier JP
    J Hazard Mater; 2009 Aug; 167(1-3):896-903. PubMed ID: 19233555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous elimination of dissolved and dispersed pollutants from cutting oil wastes using two aqueous phase extraction methods.
    Talbi Z; Haddou B; Bouberka Z; Derriche Z
    J Hazard Mater; 2009 Apr; 163(2-3):748-55. PubMed ID: 18692960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benzene removal from waste water using aqueous surfactant two-phase extraction with cationic and anionic surfactant mixtures.
    Weschayanwiwat P; Kunanupap O; Scamehorn JF
    Chemosphere; 2008 Jul; 72(7):1043-8. PubMed ID: 18514760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elimination of fuel spills from effluent using cloud point extraction methods.
    Ghouas H; Haddou B; Bouabdesselam H; Bouberka Z; Derriche Z
    J Hazard Mater; 2010 Aug; 180(1-3):188-96. PubMed ID: 20435416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speciation determination of chromium(III) and (VI) using preconcentration cloud point extraction with flame atomic absorption spectrometry (FAAS).
    Kiran K; Kumar KS; Prasad B; Suvardhan K; Lekkala RB; Janardhanam K
    J Hazard Mater; 2008 Feb; 150(3):582-6. PubMed ID: 17583423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel cloud point extraction approach using cationic surfactant for the separation and pre-concentration of chromium species in natural water prior to ICP-DRC-MS determination.
    Meeravali NN; Jiang SJ
    Talanta; 2009 Nov; 80(1):173-8. PubMed ID: 19782209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of non-ionic organic pollutants from water via liquid-liquid extraction.
    López-Montilla JC; Pandey S; Shah DO; Crisalle OD
    Water Res; 2005 May; 39(9):1907-13. PubMed ID: 15899289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of mixed surfactants on the volatilization of naphthalene from aqueous solutions.
    Shen X; Sun Y; Ma Z; Zhang P; Zhang C; Zhu L
    J Hazard Mater; 2007 Feb; 140(1-2):187-93. PubMed ID: 16959406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speciation and removal of chromium from aqueous solution by white, yellow and red UAE sand.
    Khamis M; Jumean F; Abdo N
    J Hazard Mater; 2009 Sep; 169(1-3):948-52. PubMed ID: 19443116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects and mechanisms of anionic and nonionic surfactants on biochar removal of chromium.
    Chai Q; Lu L; Lin Y; Ji X; Yang C; He S; Zhang D
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18443-18450. PubMed ID: 29696541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extractive removal of chromium (VI) from industrial waste solution.
    Agrawal A; Pal C; Sahu KK
    J Hazard Mater; 2008 Nov; 159(2-3):458-64. PubMed ID: 18417285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash.
    Wu D; Sui Y; He S; Wang X; Li C; Kong H
    J Hazard Mater; 2008 Jul; 155(3):415-23. PubMed ID: 18178311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenol sorption on surfactant-modified Mexican zeolitic-rich tuff in batch and continuous systems.
    Díaz-Nava C; Olguín MT; Solache-Ríos M; Alarcón-Herrera MT; Aguilar-Elguezabal A
    J Hazard Mater; 2009 Aug; 167(1-3):1063-9. PubMed ID: 19282106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrotrope-induced inversion of salt effects on the cloud point of an extended surfactant.
    Klaus A; Tiddy GJ; Rachel R; Trinh AP; Maurer E; Touraud D; Kunz W
    Langmuir; 2011 Apr; 27(8):4403-11. PubMed ID: 21443178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloud point extraction of toxic eosin dye using Triton X-100 as nonionic surfactant.
    Purkait MK; Banerjee S; Mewara S; DasGupta S; De S
    Water Res; 2005 Oct; 39(16):3885-90. PubMed ID: 16143363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ionic strength and hardness of water on the non-ionic surfactant-enhanced remediation of perchloroethylene contamination.
    Kim ES; Lee DH; Yum BW; Chang HW
    J Hazard Mater; 2005 Mar; 119(1-3):195-203. PubMed ID: 15752866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the extraction of chromium(III) by emulsion liquid membrane.
    Zhao L; Fei D; Dang Y; Zhou X; Xiao J
    J Hazard Mater; 2010 Jun; 178(1-3):130-5. PubMed ID: 20122791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction of humic acid by coacervate: investigation of direct and back processes.
    Ghouas H; Haddou B; Kameche M; Derriche Z; Gourdon C
    J Hazard Mater; 2012 Feb; 205-206():171-8. PubMed ID: 22260753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of TX-100 and TX-114 for the separation of chrysoidine dye using cloud point extraction.
    Purkait MK; DasGupta S; De S
    J Hazard Mater; 2006 Sep; 137(2):827-35. PubMed ID: 16600488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles.
    Geng B; Jin Z; Li T; Qi X
    Chemosphere; 2009 May; 75(6):825-30. PubMed ID: 19217139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.