BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19233754)

  • 1. Structure-function relationships and source-to-ground distance in electrospun polycaprolactone.
    Gaumer J; Prasad A; Lee D; Lannutti J
    Acta Biomater; 2009 Jun; 5(5):1552-61. PubMed ID: 19233754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix.
    McClure MJ; Sell SA; Ayres CE; Simpson DG; Bowlin GL
    Biomed Mater; 2009 Oct; 4(5):055010. PubMed ID: 19815970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun PCL in vitro: a microstructural basis for mechanical property changes.
    Johnson J; Niehaus A; Nichols S; Lee D; Koepsel J; Anderson D; Lannutti J
    J Biomater Sci Polym Ed; 2009; 20(4):467-81. PubMed ID: 19228448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning.
    Thomas V; Jose MV; Chowdhury S; Sullivan JF; Dean DR; Vohra YK
    J Biomater Sci Polym Ed; 2006; 17(9):969-84. PubMed ID: 17094636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterization and cell response evaluation of electrospun PCL membranes: micrometric versus submicrometric fibers.
    Del Gaudio C; Bianco A; Folin M; Baiguera S; Grigioni M
    J Biomed Mater Res A; 2009 Jun; 89(4):1028-39. PubMed ID: 18478554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical testing of electrospun PCL fibers.
    Croisier F; Duwez AS; Jérôme C; Léonard AF; van der Werf KO; Dijkstra PJ; Bennink ML
    Acta Biomater; 2012 Jan; 8(1):218-24. PubMed ID: 21878398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration.
    Thomas V; Zhang X; Catledge SA; Vohra YK
    Biomed Mater; 2007 Dec; 2(4):224-32. PubMed ID: 18458479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility.
    Lee J; Tae G; Kim YH; Park IS; Kim SH; Kim SH
    Biomaterials; 2008 Apr; 29(12):1872-9. PubMed ID: 18234330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of electrospun three-arm star poly(ε-caprolactone) meshes for tissue engineering applications.
    Puppi D; Detta N; Piras AM; Chiellini F; Clarke DA; Reilly GC; Chiellini E
    Macromol Biosci; 2010 Aug; 10(8):887-97. PubMed ID: 20376838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of burst pressure competent vascular grafts via electrospinning: effects of microstructure.
    Drilling S; Gaumer J; Lannutti J
    J Biomed Mater Res A; 2009 Mar; 88(4):923-34. PubMed ID: 18384169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of electrospun scaffold stiffness via coaxial core diameter.
    Drexler JW; Powell HM
    Acta Biomater; 2011 Mar; 7(3):1133-9. PubMed ID: 20977951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical characterization of electrospun polycaprolactone (PCL): a potential scaffold for tissue engineering.
    Duling RR; Dupaix RB; Katsube N; Lannutti J
    J Biomech Eng; 2008 Feb; 130(1):011006. PubMed ID: 18298182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement of electrospun membranes using nanoscale Al2O3 whiskers for improved tissue scaffolds.
    Dong Z; Wu Y; Wang Q; Xie C; Ren Y; Clark RL
    J Biomed Mater Res A; 2012 Apr; 100(4):903-10. PubMed ID: 22275136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensile testing of a single ultrafine polymeric fiber.
    Tan EP; Ng SY; Lim CT
    Biomaterials; 2005 May; 26(13):1453-6. PubMed ID: 15522746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of mechanical strength properties of hemp fibers using near-infrared fourier transform Raman microspectroscopy.
    Peetla P; Schenzel KC; Diepenbrock W
    Appl Spectrosc; 2006 Jun; 60(6):682-91. PubMed ID: 16808870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-electrospun nanofiber fabrics of poly(L-lactide-co-epsilon-caprolactone) with type I collagen or heparin.
    Kwon IK; Matsuda T
    Biomacromolecules; 2005; 6(4):2096-105. PubMed ID: 16004450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(anhydride-ester) fibers: role of copolymer composition on hydrolytic degradation and mechanical properties.
    Whitaker-Brothers K; Uhrich K
    J Biomed Mater Res A; 2004 Aug; 70(2):309-18. PubMed ID: 15227676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of molecular orientation on mechanical property of single electrospun fiber of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate].
    Chan KH; Wong SY; Li X; Zhang YZ; Lim PC; Lim CT; Kotaki M; He CB
    J Phys Chem B; 2009 Oct; 113(40):13179-85. PubMed ID: 19761245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure.
    Marras SI; Kladi KP; Tsivintzelis I; Zuburtikudis I; Panayiotou C
    Acta Biomater; 2008 May; 4(3):756-65. PubMed ID: 18294944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.