BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19233952)

  • 1. Characterization of a beta-glucoside operon (bgc) prevalent in septicemic and uropathogenic Escherichia coli strains.
    Neelakanta G; Sankar TS; Schnetz K
    Appl Environ Microbiol; 2009 Apr; 75(8):2284-93. PubMed ID: 19233952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon.
    Desai SK; Nandimath K; Mahadevan S
    Arch Microbiol; 2010 Oct; 192(10):821-33. PubMed ID: 20697693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of cellobiose utilization in Escherichia coli K12.
    Kricker M; Hall BG
    Mol Biol Evol; 1984 Feb; 1(2):171-82. PubMed ID: 6400650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12.
    Parker LL; Hall BG
    Genetics; 1990 Mar; 124(3):455-71. PubMed ID: 2179047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm.
    Harwani D
    Braz J Microbiol; 2014; 45(4):1139-44. PubMed ID: 25763016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of the evolution of cellobiose utilization in Escherichia coli and Shigella sonnei.
    Joseph AM; Sonowal R; Mahadevan S
    Arch Microbiol; 2017 Mar; 199(2):247-257. PubMed ID: 27695910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fourth Escherichia coli gene system with the potential to evolve beta-glucoside utilization.
    Parker LL; Hall BG
    Genetics; 1988 Jul; 119(3):485-90. PubMed ID: 3042507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the beta-glucoside utilization (bgl) genes of Shigella sonnei: evolutionary implications for their maintenance in a cryptic state.
    Kharat AS; Mahadevan S
    Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():2039-2049. PubMed ID: 10931908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate of the H-NS-repressed bgl operon in evolution of Escherichia coli.
    Sankar TS; Neelakanta G; Sangal V; Plum G; Achtman M; Schnetz K
    PLoS Genet; 2009 Mar; 5(3):e1000405. PubMed ID: 19266030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The salCAB operon of Azospirillum irakense, required for growth on salicin, is repressed by SalR, a transcriptional regulator that belongs to the Lacl/GalR family.
    Somers E; Keijers V; Ptacek D; Halvorsen Ottoy M; Srinivasan M; Vanderleyden J; Faure D
    Mol Gen Genet; 2000 Jul; 263(6):1038-46. PubMed ID: 10954090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide sequences of the arb genes, which control beta-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new beta-glycohydrolase family including enzymes from eubacteria, archeabacteria, and humans.
    el Hassouni M; Henrissat B; Chippaux M; Barras F
    J Bacteriol; 1992 Feb; 174(3):765-77. PubMed ID: 1732212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptic operon for beta-glucoside metabolism in Escherichia coli K12: genetic evidence for a regulatory protein.
    Defez R; De Felice M
    Genetics; 1981 Jan; 97(1):11-25. PubMed ID: 6266910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Azospirillum irakense KBC1 on the aryl beta-glucoside salicin requires either salA or salB.
    Faure D; Desair J; Keijers V; Bekri MA; Proost P; Henrissat B; Vanderleyden J
    J Bacteriol; 1999 May; 181(10):3003-9. PubMed ID: 10321999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryptic genes for cellobiose utilization in natural isolates of Escherichia coli.
    Hall BG; Betts PW
    Genetics; 1987 Mar; 115(3):431-9. PubMed ID: 3552874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical genetics of the cryptic gene system for cellobiose utilization in Escherichia coli K12.
    Kricker M; Hall BG
    Genetics; 1987 Mar; 115(3):419-29. PubMed ID: 3552873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The beta-glucoside genes of Klebsiella aerogenes: conservation and divergence in relation to the cryptic bgl genes of Escherichia coli.
    Raghunand TR; Mahadevan S
    FEMS Microbiol Lett; 2003 Jun; 223(2):267-74. PubMed ID: 12829297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes.
    Schnetz K; Toloczyki C; Rak B
    J Bacteriol; 1987 Jun; 169(6):2579-90. PubMed ID: 3034860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides.
    Lai X; Davis FC; Hespell RB; Ingram LO
    Appl Environ Microbiol; 1997 Feb; 63(2):355-63. PubMed ID: 9023916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insertion Sequence (IS) Element-Mediated Activating Mutations of the Cryptic Aromatic β-Glucoside Utilization (
    Zhang Z; Zhou K; Tran D; Saier M
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive and negative regulation of the bgl operon in Escherichia coli.
    Mahadevan S; Reynolds AE; Wright A
    J Bacteriol; 1987 Jun; 169(6):2570-8. PubMed ID: 3294798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.