These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Kinetic properties of an RNA enzyme that undergoes self-sustained exponential amplification. Ferretti AC; Joyce GF Biochemistry; 2013 Feb; 52(7):1227-35. PubMed ID: 23384307 [TBL] [Abstract][Full Text] [Related]
8. An isothermal system that couples ligand-dependent catalysis to ligand-independent exponential amplification. Lam BJ; Joyce GF J Am Chem Soc; 2011 Mar; 133(9):3191-7. PubMed ID: 21322594 [TBL] [Abstract][Full Text] [Related]
9. Aptazymes: Expanding the Specificity of Natural Catalytic Nucleic Acids by Application of In Vitro Selected Oligonucleotides. Walter JG; Stahl F Adv Biochem Eng Biotechnol; 2020; 170():107-119. PubMed ID: 30847536 [TBL] [Abstract][Full Text] [Related]
10. Ligand-dependent exponential amplification of a self-replicating L-RNA enzyme. Olea C; Horning DP; Joyce GF J Am Chem Soc; 2012 May; 134(19):8050-3. PubMed ID: 22551009 [TBL] [Abstract][Full Text] [Related]
11. Enzyme-free amplified detection of nucleic acids based on self-sustained replication of RNAzyme and its application in tumor cell detection. Ren R; Wang LL; Ding TR; Li XM Biosens Bioelectron; 2014 Apr; 54():122-7. PubMed ID: 24262777 [TBL] [Abstract][Full Text] [Related]
12. 3'-terminal labelling of RNA with T4 RNA ligase. England TE; Uhlenbeck OC Nature; 1978 Oct; 275(5680):560-1. PubMed ID: 692735 [No Abstract] [Full Text] [Related]
13. Kinetic analysis of aptazyme-regulated gene expression in a cell-free translation system: modeling of ligand-dependent and -independent expression. Kobori S; Ichihashi N; Kazuta Y; Matsuura T; Yomo T RNA; 2012 Aug; 18(8):1458-65. PubMed ID: 22733807 [TBL] [Abstract][Full Text] [Related]
14. Leakage and slow allostery limit performance of single drug-sensing aptazyme molecules based on the hammerhead ribozyme. de Silva C; Walter NG RNA; 2009 Jan; 15(1):76-84. PubMed ID: 19029309 [TBL] [Abstract][Full Text] [Related]
16. Joining of 3'-modified oligonucleotides by T4 RNA ligase. Synthesis of a heptadecanucleotide corresponding to the bases 61--77 from Escherichia coli tRNAfMet. Ohtsuka E; Nishikawa S; Markham AF; Tanaka S; Miyake T; Wakabayashi T; Ikehara M; Sugiura M Biochemistry; 1978 Nov; 17(23):4894-9. PubMed ID: 363145 [TBL] [Abstract][Full Text] [Related]
17. Elongation of oligonucleotides in the 3'-direction with activated mononucleotides and their analogs using RNA ligase. Ohtsuka E; Miyake T; Nagao K; Uemura H; Nishikawa S; Sugiura M; Ikehara M Nucleic Acids Res; 1980 Feb; 8(3):601-10. PubMed ID: 7443536 [TBL] [Abstract][Full Text] [Related]
18. Engineering Aptazyme Switches for Conditional Gene Expression in Mammalian Cells Utilizing an In Vivo Screening Approach. Rehm C; Klauser B; Finke M; Hartig JS Methods Mol Biol; 2021; 2323():199-212. PubMed ID: 34086282 [TBL] [Abstract][Full Text] [Related]
19. Design and optimization of effector-activated ribozyme ligases. Robertson MP; Ellington AD Nucleic Acids Res; 2000 Apr; 28(8):1751-9. PubMed ID: 10734194 [TBL] [Abstract][Full Text] [Related]
20. RNA end-labeling and RNA ligase activities can produce a circular rRNA in whole cell extracts from trypanosomes. White TC; Borst P Nucleic Acids Res; 1987 Apr; 15(8):3275-90. PubMed ID: 2437529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]