BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 19234468)

  • 1. Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase.
    Klein DJ; Edwards TE; Ferré-D'Amaré AR
    Nat Struct Mol Biol; 2009 Mar; 16(3):343-4. PubMed ID: 19234468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
    Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA.
    Kang M; Peterson R; Feigon J
    Mol Cell; 2009 Mar; 33(6):784-90. PubMed ID: 19285444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain.
    Roth A; Winkler WC; Regulski EE; Lee BW; Lim J; Jona I; Barrick JE; Ritwik A; Kim JN; Welz R; Iwata-Reuyl D; Breaker RR
    Nat Struct Mol Biol; 2007 Apr; 14(4):308-17. PubMed ID: 17384645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of solution and crystal structures of preQ1 riboswitch reveals calcium-induced changes in conformation and dynamics.
    Zhang Q; Kang M; Peterson RD; Feigon J
    J Am Chem Soc; 2011 Apr; 133(14):5190-3. PubMed ID: 21410253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
    Feng J; Walter NG; Brooks CL
    J Am Chem Soc; 2011 Mar; 133(12):4196-9. PubMed ID: 21375305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of the purine riboswitch aptamer domain.
    Gilbert SD; Love CE; Edwards AL; Batey RT
    Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A small RNA that cooperatively senses two stacked metabolites in one pocket for gene control.
    Schroeder GM; Cavender CE; Blau ME; Jenkins JL; Mathews DH; Wedekind JE
    Nat Commun; 2022 Jan; 13(1):199. PubMed ID: 35017488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding of a transcriptionally acting preQ1 riboswitch.
    Rieder U; Kreutz C; Micura R
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10804-9. PubMed ID: 20534493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function analysis of a type III preQ
    Schroeder GM; Kiliushik D; Jenkins JL; Wedekind JE
    J Biol Chem; 2023 Oct; 299(10):105208. PubMed ID: 37660906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.
    Jenkins JL; Krucinska J; McCarty RM; Bandarian V; Wedekind JE
    J Biol Chem; 2011 Jul; 286(28):24626-37. PubMed ID: 21592962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudoknot preorganization of the preQ1 class I riboswitch.
    Santner T; Rieder U; Kreutz C; Micura R
    J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of amino acid surveillance by higher-order tRNA-mRNA interactions.
    Li S; Su Z; Lehmann J; Stamatopoulou V; Giarimoglou N; Henderson FE; Fan L; Pintilie GD; Zhang K; Chen M; Ludtke SJ; Wang YX; Stathopoulos C; Chiu W; Zhang J
    Nat Struct Mol Biol; 2019 Dec; 26(12):1094-1105. PubMed ID: 31740854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural studies of the purine and SAM binding riboswitches.
    Gilbert SD; Montange RK; Stoddard CD; Batey RT
    Cold Spring Harb Symp Quant Biol; 2006; 71():259-68. PubMed ID: 17381305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Conformational Dynamics Confers Thermal Adaptability to preQ
    Gong Z; Yang S; Dong X; Yang QF; Zhu YL; Xiao Y; Tang C
    J Mol Biol; 2020 Jul; 432(16):4523-4543. PubMed ID: 32522558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study.
    Banáš P; Sklenovský P; Wedekind JE; Šponer J; Otyepka M
    J Phys Chem B; 2012 Oct; 116(42):12721-34. PubMed ID: 22998634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch.
    Lu C; Ding F; Chowdhury A; Pradhan V; Tomsic J; Holmes WM; Henkin TM; Ke A
    J Mol Biol; 2010 Dec; 404(5):803-18. PubMed ID: 20951706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-dependent folding of the three-way junction in the purine riboswitch.
    Stoddard CD; Gilbert SD; Batey RT
    RNA; 2008 Apr; 14(4):675-84. PubMed ID: 18268025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.