These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 19234587)

  • 1. Prefrontal cortex oxygenation is preserved and does not contribute to impaired neuromuscular activation during passive hyperthermia.
    Morrison SA; Sleivert GG; Neary JP; Cheung SS
    Appl Physiol Nutr Metab; 2009 Feb; 34(1):66-74. PubMed ID: 19234587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voluntary muscle activation is impaired by core temperature rather than local muscle temperature.
    Thomas MM; Cheung SS; Elder GC; Sleivert GG
    J Appl Physiol (1985); 2006 Apr; 100(4):1361-9. PubMed ID: 16339343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central and peripheral fatigue during passive and exercise-induced hyperthermia.
    Périard JD; Caillaud C; Thompson MW
    Med Sci Sports Exerc; 2011 Sep; 43(9):1657-65. PubMed ID: 21364487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive hyperthermia reduces voluntary activation and isometric force production.
    Morrison S; Sleivert GG; Cheung SS
    Eur J Appl Physiol; 2004 May; 91(5-6):729-36. PubMed ID: 15015001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic influence on neuromuscular function and tolerance during passive hyperthermia.
    Morrison SA; Sleivert GG; Cheung S
    Med Sci Sports Exerc; 2006 Oct; 38(10):1754-61. PubMed ID: 17019297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebrovascular and corticomotor function during progressive passive hyperthermia in humans.
    Ross EZ; Cotter JD; Wilson L; Fan JL; Lucas SJ; Ainslie PN
    J Appl Physiol (1985); 2012 Mar; 112(5):748-58. PubMed ID: 22134692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core and skin temperature influences on the surface electromyographic responses to an isometric force and position task.
    Coletta NA; Mallette MM; Gabriel DA; Tyler CJ; Cheung SS
    PLoS One; 2018; 13(3):e0195219. PubMed ID: 29596491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does raising morning rectal temperature to evening levels offset the diurnal variation in muscle force production?
    Edwards BJ; Pullinger SA; Kerry JW; Robinson WR; Reilly TP; Robertson CM; Waterhouse JM
    Chronobiol Int; 2013 May; 30(4):486-501. PubMed ID: 23281719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased prefrontal oxygenation elicited by stimulation of limb mechanosensitive afferents during cycling exercise.
    Asahara R; Matsukawa K
    Am J Physiol Regul Integr Comp Physiol; 2018 Aug; 315(2):R230-R240. PubMed ID: 29590559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prefrontal cortex oxygenation during incremental exercise in chronic fatigue syndrome.
    Patrick Neary J; Roberts AD; Leavins N; Harrison MF; Croll JC; Sexsmith JR
    Clin Physiol Funct Imaging; 2008 Nov; 28(6):364-72. PubMed ID: 18671793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperthermia and central fatigue during prolonged exercise in humans.
    Nybo L; Nielsen B
    J Appl Physiol (1985); 2001 Sep; 91(3):1055-60. PubMed ID: 11509498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-Exercise Rehydration Attenuates Central Fatigability during 2-Min Maximum Voluntary Contraction in Hyperthermia.
    Vadopalas K; Ratkevičius A; Skurvydas A; Sipavičienė S; Brazaitis M
    Medicina (Kaunas); 2019 Mar; 55(3):. PubMed ID: 30871128
    [No Abstract]   [Full Text] [Related]  

  • 13. The influence of ice slushy on voluntary contraction force following exercise-induced hyperthermia.
    Burdon CA; Easthope CS; Johnson NA; Chapman PG; O'Connor H
    Appl Physiol Nutr Metab; 2014 Jul; 39(7):781-6. PubMed ID: 24971678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased oxygenation of the cerebral prefrontal cortex prior to the onset of voluntary exercise in humans.
    Matsukawa K; Ishii K; Liang N; Endo K; Ohtani R; Nakamoto T; Wakasugi R; Kadowaki A; Komine H
    J Appl Physiol (1985); 2015 Sep; 119(5):452-62. PubMed ID: 26183481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lowering of skin temperature decreases isokinetic maximal force production independent of core temperature.
    Cheung SS; Sleivert GG
    Eur J Appl Physiol; 2004 May; 91(5-6):723-8. PubMed ID: 15015000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does lowering evening rectal temperature to morning levels offset the diurnal variation in muscle force production?
    Robinson WR; Pullinger SA; Kerry JW; Giacomoni M; Robertson CM; Burniston JG; Waterhouse JM; Edwards BJ
    Chronobiol Int; 2013 Oct; 30(8):998-1010. PubMed ID: 23863092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adjustments in the force-frequency relationship during passive and exercise-induced hyperthermia.
    Périard JD; Racinais S; Thompson MW
    Muscle Nerve; 2014 Nov; 50(5):822-9. PubMed ID: 24615660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human cardiorespiratory and cerebrovascular function during severe passive hyperthermia: effects of mild hypohydration.
    Fan JL; Cotter JD; Lucas RA; Thomas K; Wilson L; Ainslie PN
    J Appl Physiol (1985); 2008 Aug; 105(2):433-45. PubMed ID: 18483173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperthermia: a failure of the motor cortex and the muscle.
    Todd G; Butler JE; Taylor JL; Gandevia SC
    J Physiol; 2005 Mar; 563(Pt 2):621-31. PubMed ID: 15613373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The prolactin responses to active and passive heating in man.
    Low D; Purvis A; Reilly T; Cable NT
    Exp Physiol; 2005 Nov; 90(6):909-17. PubMed ID: 16157657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.