BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19234696)

  • 1. The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule.
    Brookes E; Demeler B; Rosano C; Rocco M
    Eur Biophys J; 2010 Feb; 39(3):423-35. PubMed ID: 19234696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic Modeling and Its Application in AUC.
    Rocco M; Byron O
    Methods Enzymol; 2015; 562():81-108. PubMed ID: 26412648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developments in the US-SOMO bead modeling suite: new features in the direct residue-to-bead method, improved grid routines, and influence of accessible surface area screening.
    Brookes E; Demeler B; Rocco M
    Macromol Biosci; 2010 Jul; 10(7):746-53. PubMed ID: 20480513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in the UltraScan SOlution MOdeller (US-SOMO) hydrodynamic and small-angle scattering data analysis and simulation suite.
    Brookes E; Rocco M
    Eur Biophys J; 2018 Oct; 47(7):855-864. PubMed ID: 29594411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond the US-SOMO-AF database: a new website for hydrodynamic, structural, and circular dichroism calculations on user-supplied structures.
    Brookes EH; Rocco M
    Eur Biophys J; 2023 Jul; 52(4-5):225-232. PubMed ID: 36853343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computing translational diffusion and sedimentation coefficients: an evaluation of experimental data and programs.
    Rocco M; Byron O
    Eur Biophys J; 2015 Sep; 44(6):417-31. PubMed ID: 26066679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global fit and structure optimization of flexible and rigid macromolecules and nanoparticles from analytical ultracentrifugation and other dilute solution properties.
    Ortega A; Amorós D; García de la Torre J
    Methods; 2011 May; 54(1):115-23. PubMed ID: 21163355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in macromolecular hydrodynamic modeling.
    Aragon SR
    Methods; 2011 May; 54(1):101-14. PubMed ID: 21073955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrinogen species as resolved by HPLC-SAXS data processing within the
    Brookes E; Pérez J; Cardinali B; Profumo A; Vachette P; Rocco M
    J Appl Crystallogr; 2013 Dec; 46(Pt 6):1823-1833. PubMed ID: 24282333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the hydration of proteins: prediction of structural and hydrodynamic parameters from X-ray diffraction and scattering data.
    Durchschlag H; Zipper P
    Eur Biophys J; 2003 Aug; 32(5):487-502. PubMed ID: 12715248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models.
    Ortega A; Amorós D; García de la Torre J
    Biophys J; 2011 Aug; 101(4):892-8. PubMed ID: 21843480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using prior knowledge in the determination of macromolecular size-distributions by analytical ultracentrifugation.
    Brown PH; Balbo A; Schuck P
    Biomacromolecules; 2007 Jun; 8(6):2011-24. PubMed ID: 17521163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods and tools for the prediction of hydrodynamic coefficients and other solution properties of flexible macromolecules in solution. A tutorial minireview.
    García de la Torre J; Ortega A; Amorós D; Rodríguez Schmidt R; Hernández Cifre JG
    Macromol Biosci; 2010 Jul; 10(7):721-30. PubMed ID: 20461749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spectral decomposition quality assessment tool for multi-wavelength AUC experiments with UltraScan.
    Mortezazadeh S; Demeler B
    Eur Biophys J; 2023 Jul; 52(4-5):303-310. PubMed ID: 36930298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of modern approaches to the hydrodynamic characterisation of polydisperse macromolecular systems in biotechnology.
    Gillis RB; Rowe AJ; Adams GG; Harding SE
    Biotechnol Genet Eng Rev; 2014 Oct; 30(1-2):142-57. PubMed ID: 25686159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of hydrodynamic bead models from high-resolution X-ray crystallographic or nuclear magnetic resonance data.
    Byron O
    Biophys J; 1997 Jan; 72(1):408-15. PubMed ID: 8994627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Lamm-Equation modeling of sedimentation velocity data to determine the kinetic and thermodynamic properties of macromolecular interactions.
    Brautigam CA
    Methods; 2011 May; 54(1):4-15. PubMed ID: 21187153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integral approach to biomacromolecular structure by analytical-ultracentrifugation and small-angle scattering.
    Morishima K; Okuda A; Inoue R; Sato N; Miyamoto Y; Urade R; Yagi-Utsumi M; Kato K; Hirano R; Kujirai T; Kurumizaka H; Sugiyama M
    Commun Biol; 2020 Jun; 3(1):294. PubMed ID: 32513995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural studies of RNA-protein complexes: A hybrid approach involving hydrodynamics, scattering, and computational methods.
    Patel TR; Chojnowski G; Astha ; Koul A; McKenna SA; Bujnicki JM
    Methods; 2017 Apr; 118-119():146-162. PubMed ID: 27939506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-speed sedimentation velocity simulations with UltraScan-III.
    Williams TL; Gorbet GE; Demeler B
    Eur Biophys J; 2018 Oct; 47(7):815-823. PubMed ID: 29748855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.