These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19234718)

  • 1. Ferulate-coniferyl alcohol cross-coupled products formed by radical coupling reactions.
    Zhang A; Lu F; Sun R; Ralph J
    Planta; 2009 Apr; 229(5):1099-108. PubMed ID: 19234718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model studies of ferulate-coniferyl alcohol cross-product formation in primary maize walls: implications for lignification in grasses.
    Grabber JH; Ralph J; Hatfield RD
    J Agric Food Chem; 2002 Oct; 50(21):6008-16. PubMed ID: 12358473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains.
    Bunzel M; Ralph J; Lu F; Hatfield RD; Steinhart H
    J Agric Food Chem; 2004 Oct; 52(21):6496-502. PubMed ID: 15479013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of new 5-linked pinoresinol lignin models.
    Yue F; Lu F; Sun R; Ralph J
    Chemistry; 2012 Dec; 18(51):16402-10. PubMed ID: 23109283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peroxidase-catalyzed oligomerization of ferulic acid esters.
    Bunzel M; Heuermann B; Kim H; Ralph J
    J Agric Food Chem; 2008 Nov; 56(21):10368-75. PubMed ID: 18841901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabinose Conjugates Diagnostic of Ferulate-Ferulate and Ferulate-Monolignol Cross-Coupling Are Released by Mild Acidolysis of Grass Cell Walls.
    Lapierre C; Voxeur A; Boutet S; Ralph J
    J Agric Food Chem; 2019 Nov; 67(46):12962-12971. PubMed ID: 31644281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling suberization with peroxidase-catalyzed polymerization of hydroxycinnamic acids: cross-coupling and dimerization reactions.
    Arrieta-Baez D; Stark RE
    Phytochemistry; 2006 Apr; 67(7):743-53. PubMed ID: 16524605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-linking of maize walls by ferulate dimerization and incorporation into lignin.
    Grabber JH; Ralph J; Hatfield RD
    J Agric Food Chem; 2000 Dec; 48(12):6106-13. PubMed ID: 11312783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of multistandard and TMS-standard calculated NMR shifts for coniferyl alcohol and application of the multistandard method to lignin dimers.
    Watts HD; Mohamed MN; Kubicki JD
    J Phys Chem B; 2011 Mar; 115(9):1958-70. PubMed ID: 21319787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radical coupling reactions in lignin synthesis: a density functional theory study.
    Sangha AK; Parks JM; Standaert RF; Ziebell A; Davis M; Smith JC
    J Phys Chem B; 2012 Apr; 116(16):4760-8. PubMed ID: 22475051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls.
    Grabber JH; Hatfield RD; Lu F; Ralph J
    Biomacromolecules; 2008 Sep; 9(9):2510-6. PubMed ID: 18712922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Products Generated from the Transformations of Ferulic Acid Dilactone.
    He Y; Jia Y; Lu F
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 31979323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic study of coniferyl alcohol radical binding to the (+)-pinoresinol forming dirigent protein.
    Halls SC; Davin LB; Kramer DM; Lewis NG
    Biochemistry; 2004 Mar; 43(9):2587-95. PubMed ID: 14992596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A potential role for sinapyl p-coumarate as a radical transfer mechanism in grass lignin formation.
    Hatfield R; Ralph J; Grabber JH
    Planta; 2008 Nov; 228(6):919-28. PubMed ID: 18654797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid syntheses of dehydrodiferulates via biomimetic radical coupling reactions of ethyl ferulate.
    Lu F; Wei L; Azarpira A; Ralph J
    J Agric Food Chem; 2012 Aug; 60(34):8272-7. PubMed ID: 22846085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sinapate dehydrodimers and sinapate-ferulate heterodimers in cereal dietary fiber.
    Bunzel M; Ralph J; Kim H; Lu F; Ralph SA; Marita JM; Hatfield RD; Steinhart H
    J Agric Food Chem; 2003 Feb; 51(5):1427-34. PubMed ID: 12590493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative coupling of a feruloyl-arabinoxylan trisaccharide (FAXX) in the walls of living maize cells requires endogenous hydrogen peroxide and is controlled by a low-Mr apoplastic inhibitor.
    Encina A; Fry SC
    Planta; 2005 Dec; 223(1):77-89. PubMed ID: 16049678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional theory study on the coupling and reactions of diferuloylputrescine as a lignin monomer.
    Elder T; Del Río JC; Ralph J; Rencoret J; Kim H
    Phytochemistry; 2022 May; 197():113122. PubMed ID: 35131641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequencing around 5-hydroxyconiferyl alcohol-derived units in caffeic acid O-methyltransferase-deficient poplar lignins.
    Lu F; Marita JM; Lapierre C; Jouanin L; Morreel K; Boerjan W; Ralph J
    Plant Physiol; 2010 Jun; 153(2):569-79. PubMed ID: 20427467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability.
    Grabber JH; Schatz PF; Kim H; Lu F; Ralph J
    BMC Plant Biol; 2010 Jun; 10():114. PubMed ID: 20565789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.