BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

610 related articles for article (PubMed ID: 19235186)

  • 1. Using genome-wide pathway analysis to unravel the etiology of complex diseases.
    Elbers CC; van Eijk KR; Franke L; Mulder F; van der Schouw YT; Wijmenga C; Onland-Moret NC
    Genet Epidemiol; 2009 Jul; 33(5):419-31. PubMed ID: 19235186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive rule inference for epistatic interaction detection in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mixed two-stage method for detecting interactions in genomewide association studies.
    Zuo Y; Kang G
    J Theor Biol; 2010 Feb; 262(4):576-83. PubMed ID: 19896954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying disease related sub-pathways for analysis of genome-wide association studies.
    Li C; Han J; Shang D; Li J; Wang Y; Wang Y; Zhang Y; Yao Q; Zhang C; Li K; Li X
    Gene; 2012 Jul; 503(1):101-9. PubMed ID: 22565193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biostatistical aspects of genome-wide association studies.
    Ziegler A; König IR; Thompson JR
    Biom J; 2008 Feb; 50(1):8-28. PubMed ID: 18217698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of variability in GWAS with CRLMM genotyping algorithm on WTCCC coronary artery disease.
    Zhang L; Yin S; Miclaus K; Chierici M; Vega S; Lambert C; Hong H; Wolfinger RD; Furlanello C; Goodsaid F
    Pharmacogenomics J; 2010 Aug; 10(4):347-54. PubMed ID: 20676072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pursuit of genome-wide association studies: where are we now?
    Ku CS; Loy EY; Pawitan Y; Chia KS
    J Hum Genet; 2010 Apr; 55(4):195-206. PubMed ID: 20300123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implication of the immune system in Alzheimer's disease: evidence from genome-wide pathway analysis.
    Lambert JC; Grenier-Boley B; Chouraki V; Heath S; Zelenika D; Fievet N; Hannequin D; Pasquier F; Hanon O; Brice A; Epelbaum J; Berr C; Dartigues JF; Tzourio C; Campion D; Lathrop M; Amouyel P
    J Alzheimers Dis; 2010; 20(4):1107-18. PubMed ID: 20413860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. INTERSNP: genome-wide interaction analysis guided by a priori information.
    Herold C; Steffens M; Brockschmidt FF; Baur MP; Becker T
    Bioinformatics; 2009 Dec; 25(24):3275-81. PubMed ID: 19837719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of the current top candidate genes for AD in a genome-wide association study.
    Feulner TM; Laws SM; Friedrich P; Wagenpfeil S; Wurst SH; Riehle C; Kuhn KA; Krawczak M; Schreiber S; Nikolaus S; Förstl H; Kurz A; Riemenschneider M
    Mol Psychiatry; 2010 Jul; 15(7):756-66. PubMed ID: 19125160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics tools for single nucleotide polymorphism discovery and analysis.
    Clifford RJ; Edmonson MN; Nguyen C; Scherpbier T; Hu Y; Buetow KH
    Ann N Y Acad Sci; 2004 May; 1020():101-9. PubMed ID: 15208187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening large-scale association study data: exploiting interactions using random forests.
    Lunetta KL; Hayward LB; Segal J; Van Eerdewegh P
    BMC Genet; 2004 Dec; 5():32. PubMed ID: 15588316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies.
    Lin S; Chakravarti A; Cutler DJ
    Nat Genet; 2004 Nov; 36(11):1181-8. PubMed ID: 15502828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating domain knowledge with statistical and data mining methods for high-density genomic SNP disease association analysis.
    Dinu V; Zhao H; Miller PL
    J Biomed Inform; 2007 Dec; 40(6):750-60. PubMed ID: 17625973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On beyond GWAS.
    Nat Genet; 2010 Jul; 42(7):551. PubMed ID: 20581872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genetics of autoimmune diseases: a networked perspective.
    Baranzini SE
    Curr Opin Immunol; 2009 Dec; 21(6):596-605. PubMed ID: 19896815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide association studies (GWAS) in complex diseases: advantages and limitations.
    Riancho JA
    Reumatol Clin; 2012; 8(2):56-7. PubMed ID: 22089059
    [No Abstract]   [Full Text] [Related]  

  • 19. Understanding cardiovascular disease through the lens of genome-wide association studies.
    Arking DE; Chakravarti A
    Trends Genet; 2009 Sep; 25(9):387-94. PubMed ID: 19716196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of recent genome-wide association scans in lupus.
    Graham RR; Hom G; Ortmann W; Behrens TW
    J Intern Med; 2009 Jun; 265(6):680-8. PubMed ID: 19493061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.