These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 19235369)
1. Localization of transient signal high-values in laser Doppler flowmetry signals with an empirical mode decomposition. Humeau A; Trzepizur W; Rousseau D; Chapeau-Blondeau F; Abraham P Med Phys; 2009 Jan; 36(1):18-21. PubMed ID: 19235369 [TBL] [Abstract][Full Text] [Related]
2. Fisher information and Shannon entropy for on-line detection of transient signal high-values in laser Doppler flowmetry signals of healthy subjects. Humeau A; Trzepizur W; Rousseau D; Chapeau-Blondeau F; Abraham P Phys Med Biol; 2008 Sep; 53(18):5061-76. PubMed ID: 18723933 [TBL] [Abstract][Full Text] [Related]
3. Analysis of laser speckle contrast images variability using a novel empirical mode decomposition: comparison of results with laser Doppler flowmetry signals variability. Humeau-Heurtier A; Abraham P; Mahe G IEEE Trans Med Imaging; 2015 Feb; 34(2):618-27. PubMed ID: 25347875 [TBL] [Abstract][Full Text] [Related]
4. Generalized fractal dimensions of laser Doppler flowmetry signals recorded from glabrous and nonglabrous skin. Buard B; Mahé G; Chapeau-Blondeau F; Rousseau D; Abraham P; Humeau A Med Phys; 2010 Jun; 37(6):2827-36. PubMed ID: 20632594 [TBL] [Abstract][Full Text] [Related]
5. Processing of laser Doppler flowmetry signals from healthy subjects and patients with varicose veins: Information categorisation approach based on intrinsic mode functions and entropy computation. Humeau-Heurtier A; Klonizakis M Med Eng Phys; 2015 Jun; 37(6):553-9. PubMed ID: 25921722 [TBL] [Abstract][Full Text] [Related]
6. S-transform applied to laser Doppler flowmetry reactive hyperemia signals. Assous S; Humeau A; Tartas M; Abraham P; L'Huillier JP IEEE Trans Biomed Eng; 2006 Jun; 53(6):1032-7. PubMed ID: 16761830 [TBL] [Abstract][Full Text] [Related]
7. In vivo comparison between the principal components analysis and the Karhunen-Loève transform as methods used for the de-noising of laser Doppler reactive hyperemia signals. Mansouri C; Humeau A; L'Huillier JP Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5465-8. PubMed ID: 18003248 [TBL] [Abstract][Full Text] [Related]
8. Blood perfusion values of laser speckle contrast imaging and laser Doppler flowmetry: is a direct comparison possible? Binzoni T; Humeau-Heurtier A; Abraham P; Mahe G IEEE Trans Biomed Eng; 2013 May; 60(5):1259-65. PubMed ID: 23232361 [TBL] [Abstract][Full Text] [Related]
9. Toward a velocity-resolved microvascular blood flow measure by decomposition of the laser Doppler spectrum. Larsson M; Strömberg T J Biomed Opt; 2006; 11(1):014024. PubMed ID: 16526901 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of stationarity of laser Doppler signal in the pulse-based synchronized-averaging analysis. Hsiu H; Chao PT; Chiang WR; Hsu RY; Jan MY; Hsu TL; Wang WK; Wang YY Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():982-4. PubMed ID: 18002124 [TBL] [Abstract][Full Text] [Related]
11. Time-amplitude analysis of skin blood flow oscillations during the post-occlusive reactive hyperemia in human. Tikhonova IV; Tankanag AV; Chemeris NK Microvasc Res; 2010 Jul; 80(1):58-64. PubMed ID: 20346365 [TBL] [Abstract][Full Text] [Related]
12. Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function. Tew GA; Klonizakis M; Crank H; Briers JD; Hodges GJ Microvasc Res; 2011 Nov; 82(3):326-32. PubMed ID: 21803051 [TBL] [Abstract][Full Text] [Related]
13. A model for post-occlusive reactive hyperemia as measured with laser-Doppler perfusion monitoring. de Mul FF; Morales F; Smit AJ; Graaff R IEEE Trans Biomed Eng; 2005 Feb; 52(2):184-90. PubMed ID: 15709655 [TBL] [Abstract][Full Text] [Related]
14. Reproducibility and methodological issues of skin post-occlusive and thermal hyperemia assessed by single-point laser Doppler flowmetry. Roustit M; Blaise S; Millet C; Cracowski JL Microvasc Res; 2010 Mar; 79(2):102-8. PubMed ID: 20064535 [TBL] [Abstract][Full Text] [Related]
15. Physiological effects of indomethacin and celecobix: an S-transform laser Doppler flowmetry signal analysis. Assous S; Humeau A; Tartas M; Abraham P; L'Huillier JP Phys Med Biol; 2005 May; 50(9):1951-9. PubMed ID: 15843729 [TBL] [Abstract][Full Text] [Related]
16. The removal of wall components in Doppler ultrasound signals by using the empirical mode decomposition algorithm. Zhang Y; Gao Y; Wang L; Chen J; Shi X IEEE Trans Biomed Eng; 2007 Sep; 54(9):1631-42. PubMed ID: 17867355 [TBL] [Abstract][Full Text] [Related]
17. Time-domain algorithm for single-photon laser-Doppler flowmetry at large interoptode spacing in human bone. Binzoni T; Van De Ville D; Sanguinetti B Appl Opt; 2014 Oct; 53(30):7017-24. PubMed ID: 25402789 [TBL] [Abstract][Full Text] [Related]
18. Transitions in skin blood flow fractal scaling: the importance of fluctuation amplitude in microcirculation. Esen H; Ata N; Esen F Microvasc Res; 2015 Jan; 97():6-12. PubMed ID: 25241251 [TBL] [Abstract][Full Text] [Related]
19. Assignment of Empirical Mode Decomposition Components and Its Application to Biomedical Signals. Schiecke K; Schmidt C; Piper D; Putsche P; Feucht M; Witte H; Leistritz L Methods Inf Med; 2015; 54(5):461-73. PubMed ID: 26419400 [TBL] [Abstract][Full Text] [Related]
20. Microcirculation assessment using an individualized model for diffuse reflectance spectroscopy and conventional laser Doppler flowmetry. Strömberg T; Karlsson H; Fredriksson I; Nyström FH; Larsson M J Biomed Opt; 2014 May; 19(5):057002. PubMed ID: 24788373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]