BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 19235625)

  • 1. Time-course and mechanisms of restored vascular relaxation by reduced salt intake and angiotensin II infusion in rats fed a high-salt diet.
    McEwen ST; Schmidt JR; Somberg L; Cruz Lde L; Lombard JH
    Microcirculation; 2009 Apr; 16(3):220-34. PubMed ID: 19235625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiotensin-(1-7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries.
    Durand MJ; Raffai G; Weinberg BD; Lombard JH
    Am J Physiol Heart Circ Physiol; 2010 Oct; 299(4):H1024-33. PubMed ID: 20656887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced angiotensin II and oxidative stress contribute to impaired vasodilation in Dahl salt-sensitive rats on low-salt diet.
    Drenjancevic-Peric I; Lombard JH
    Hypertension; 2005 Apr; 45(4):687-91. PubMed ID: 15710779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiotensin II maintains cerebral vascular relaxation via EGF receptor transactivation and ERK1/2.
    McEwen ST; Balus SF; Durand MJ; Lombard JH
    Am J Physiol Heart Circ Physiol; 2009 Oct; 297(4):H1296-303. PubMed ID: 19684181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AT1 receptors prevent salt-induced vascular dysfunction in isolated middle cerebral arteries of 2 kidney-1 clip hypertensive rats.
    Beyer AM; Fredrich K; Lombard JH
    Am J Hypertens; 2013 Dec; 26(12):1398-404. PubMed ID: 23934707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-salt diet impairs vascular relaxation mechanisms in rat middle cerebral arteries.
    Lombard JH; Sylvester FA; Phillips SA; Frisbee JC
    Am J Physiol Heart Circ Physiol; 2003 Apr; 284(4):H1124-33. PubMed ID: 12456391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-dose angiotensin II infusion restores vascular function in cerebral arteries of high salt-fed rats by increasing copper/zinc superoxide dimutase expression.
    Durand MJ; Lombard JH
    Am J Hypertens; 2013 Jun; 26(6):739-47. PubMed ID: 23443725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated salt intake impairs dilation of rat skeletal muscle resistance arteries via ANG II suppression.
    Weber DS; Lombard JH
    Am J Physiol Heart Circ Physiol; 2000 Feb; 278(2):H500-6. PubMed ID: 10666081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt-induced ANG II suppression impairs the response of cerebral artery smooth muscle cells to prostacyclin.
    Zhu J; Yu M; Friesema J; Huang T; Roman RJ; Lombard JH
    Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H908-13. PubMed ID: 15486030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-dose angiotensin II supplementation restores flow-induced dilation mechanisms in cerebral arteries of Sprague-Dawley rats on a high salt diet.
    Matic A; Jukic I; Mihaljevic Z; Kolobaric N; Stupin A; Kozina N; Bujak IT; Kibel A; Lombard JH; Drenjancevic I
    J Hypertens; 2022 Mar; 40(3):441-452. PubMed ID: 34845157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of high-salt diet on vascular relaxation and oxidative stress in mesenteric resistance arteries.
    Zhu J; Huang T; Lombard JH
    J Vasc Res; 2007; 44(5):382-90. PubMed ID: 17510561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High salt diet impairs cerebral blood flow regulation via salt-induced angiotensin II suppression.
    Allen LA; Schmidt JR; Thompson CT; Carlson BE; Beard DA; Lombard JH
    Microcirculation; 2019 Apr; 26(3):e12518. PubMed ID: 30481399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of superoxide and angiotensin II suppression in salt-induced changes in endothelial Ca2+ signaling and NO production in rat aorta.
    Zhu J; Drenjancevic-Peric I; McEwen S; Friesema J; Schulta D; Yu M; Roman RJ; Lombard JH
    Am J Physiol Heart Circ Physiol; 2006 Aug; 291(2):H929-38. PubMed ID: 16603691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent changes in autonomic control of splanchnic vascular resistance and heart rate in ANG II-salt hypertension.
    Kuroki MT; Guzman PA; Fink GD; Osborn JW
    Am J Physiol Heart Circ Physiol; 2012 Feb; 302(3):H763-9. PubMed ID: 22114134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin II AT1 receptors preserve vasodilator reactivity in skeletal muscle resistance arteries.
    Weber DS; Lombard JH
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2196-202. PubMed ID: 11299222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced angiotensin II levels cause generalized vascular dysfunction via oxidant stress in hamster cheek pouch arterioles.
    Priestley JR; Buelow MW; McEwen ST; Weinberg BD; Delaney M; Balus SF; Hoeppner C; Dondlinger L; Lombard JH
    Microvasc Res; 2013 Sep; 89():134-45. PubMed ID: 23628292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attenuated flow-induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet.
    Cosic A; Jukic I; Stupin A; Mihalj M; Mihaljevic Z; Novak S; Vukovic R; Drenjancevic I
    J Physiol; 2016 Sep; 594(17):4917-31. PubMed ID: 27061200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired relaxation of cerebral arteries in the absence of elevated salt intake in normotensive congenic rats carrying the Dahl salt-sensitive renin gene.
    Durand MJ; Moreno C; Greene AS; Lombard JH
    Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H1865-74. PubMed ID: 20852041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired flow-induced dilation of coronary arterioles of dogs fed a low-salt diet: roles of ANG II, PKC, and NAD(P)H oxidase.
    Huang A; Yan C; Suematsu N; Cuevas A; Yang YM; Kertowidjojo E; Hintze TH; Kaley G; Sun D
    Am J Physiol Heart Circ Physiol; 2010 Nov; 299(5):H1476-83. PubMed ID: 20833958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NRF2 activation with Protandim attenuates salt-induced vascular dysfunction and microvascular rarefaction.
    Priestley JRC; Fink KE; McCord JM; Lombard JH
    Microcirculation; 2019 Oct; 26(7):e12575. PubMed ID: 31132190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.