BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19235631)

  • 1. Drug dissolution rate measurements--evaluation of the rotating disc method.
    Kaunisto E; Nilsson B; Axelsson A
    Pharm Dev Technol; 2009; 14(4):400-8. PubMed ID: 19235631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of hydrodynamics in the basket dissolution apparatus using computational fluid dynamics--dissolution rate implications.
    D'Arcy DM; Corrigan OI; Healy AM
    Eur J Pharm Sci; 2006 Feb; 27(2-3):259-67. PubMed ID: 16314078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic simulation (computational fluid dynamics) of asymmetrically positioned tablets in the paddle dissolution apparatus: impact on dissolution rate and variability.
    D'Arcy DM; Corrigan OI; Healy AM
    J Pharm Pharmacol; 2005 Oct; 57(10):1243-50. PubMed ID: 16259752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the effect of solubility and density gradients on local hydrodynamics and drug dissolution in the USP 4 dissolution apparatus.
    D'Arcy DM; Liu B; Corrigan OI
    Int J Pharm; 2011 Oct; 419(1-2):175-85. PubMed ID: 21843609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous measurement of liquid-phase and solid-phase transformation kinetics in rotating disc and channel flow cell dissolution devices.
    Lehto P; Aaltonen J; Niemelä P; Rantanen J; Hirvonen J; Tanninen VP; Peltonen L
    Int J Pharm; 2008 Nov; 363(1-2):66-72. PubMed ID: 18675891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optical method for continuous monitoring of the dissolution rate of pharmaceutical powders.
    Laitinen R; Lahtinen J; Silfsten P; Vartiainen E; Jarho P; Ketolainen J
    J Pharm Biomed Anal; 2010 Jun; 52(2):181-9. PubMed ID: 20116958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution of weak acids under laminar flow and rotating disk hydrodynamic conditions: application of a comprehensive convection-diffusion-migration-reaction transport model.
    Neervannan S; Southard MZ; Stella VJ
    J Pharm Sci; 2012 Sep; 101(9):3180-9. PubMed ID: 22623113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic, mass transfer, and dissolution effects induced by tablet location during dissolution testing.
    Bai G; Armenante PM
    J Pharm Sci; 2009 Apr; 98(4):1511-31. PubMed ID: 18781589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamics-induced variability in the USP apparatus II dissolution test.
    Baxter JL; Kukura J; Muzzio FJ
    Int J Pharm; 2005 Mar; 292(1-2):17-28. PubMed ID: 15725550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental determination of the diffusion boundary layer width of micron and submicron particles.
    Galli C
    Int J Pharm; 2006 Apr; 313(1-2):114-22. PubMed ID: 16529883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterisation of controlled release co-spray dried drug-polymer microparticles for inhalation 2: evaluation of in vitro release profiling methodologies for controlled release respiratory aerosols.
    Salama RO; Traini D; Chan HK; Young PM
    Eur J Pharm Biopharm; 2008 Sep; 70(1):145-52. PubMed ID: 18534832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [In vitro studies of drug liberation from suppositories with the rotating flask method].
    Koch HP; Klissenbauer C; Ritzinger A; Wallentin A
    Pharmazie; 1987 Mar; 42(3):169-72. PubMed ID: 3602072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle design of poorly water-soluble drug substances using supercritical fluid technologies.
    Yasuji T; Takeuchi H; Kawashima Y
    Adv Drug Deliv Rev; 2008 Feb; 60(3):388-98. PubMed ID: 18068261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release characterization of dimenhydrinate from an eroding and swelling matrix: selection of appropriate dissolution apparatus.
    Missaghi S; Fassihi R
    Int J Pharm; 2005 Apr; 293(1-2):35-42. PubMed ID: 15778042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of surfactant on dissolution of spherical particles in micellar systems.
    Allaboun H; Alkhamis KA; Al Jbour ND
    Eur J Pharm Biopharm; 2007 Feb; 65(2):188-97. PubMed ID: 17027244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling drug dissolution from controlled release products using genetic programming.
    Do DQ; Rowe RC; York P
    Int J Pharm; 2008 Mar; 351(1-2):194-200. PubMed ID: 18053658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dissolution determination in the rotating flask model. Effect of rotation rate and fluid volume on the solubility determination of standard test tablets in the Resotest dissolution tester].
    Koch HP; Pfeifer G
    Pharmazie; 1983 May; 38(5):318-23. PubMed ID: 6611628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental/computational approach for examining unconfined cohesive powder flow.
    Faqih A; Chaudhuri B; Alexander AW; Davies C; Muzzio FJ; Silvina Tomassone M
    Int J Pharm; 2006 Nov; 324(2):116-27. PubMed ID: 16926074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved drug dissolution and product characterization using a crescent-shaped spindle.
    Qureshi SA
    J Pharm Pharmacol; 2004 Sep; 56(9):1135-41. PubMed ID: 15324482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamics (CFD) studies of a miniaturized dissolution system.
    Frenning G; Ahnfelt E; Sjögren E; Lennernäs H
    Int J Pharm; 2017 Apr; 521(1-2):274-281. PubMed ID: 28189856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.