These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 19235823)
1. The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production. Barreca D; Fornasiero P; Gasparotto A; Gombac V; Maccato C; Montini T; Tondello E ChemSusChem; 2009; 2(3):230-3. PubMed ID: 19235823 [TBL] [Abstract][Full Text] [Related]
2. Hierarchical branched Cu2O nanowires with enhanced photocatalytic activity and stability for H2 production. Zhao Y; Wang W; Li Y; Zhang Y; Yan Z; Huo Z Nanoscale; 2014 Jan; 6(1):195-8. PubMed ID: 24241480 [TBL] [Abstract][Full Text] [Related]
3. Copper-based nanostructures: promising antibacterial agents and photocatalysts. Gao F; Pang H; Xu S; Lu Q Chem Commun (Camb); 2009 Jun; (24):3571-3. PubMed ID: 19521611 [TBL] [Abstract][Full Text] [Related]
4. A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O. Tran PD; Batabyal SK; Pramana SS; Barber J; Wong LH; Loo SC Nanoscale; 2012 Jul; 4(13):3875-8. PubMed ID: 22653156 [TBL] [Abstract][Full Text] [Related]
5. Tailoring CuO nanostructures for enhanced photocatalytic property. Liu J; Jin J; Deng Z; Huang SZ; Hu ZY; Wang L; Wang C; Chen LH; Li Y; Van Tendeloo G; Su BL J Colloid Interface Sci; 2012 Oct; 384(1):1-9. PubMed ID: 22818959 [TBL] [Abstract][Full Text] [Related]
7. F-Doped Co3O4 photocatalysts for sustainable H2 generation from water/ethanol. Gasparotto A; Barreca D; Bekermann D; Devi A; Fischer RA; Fornasiero P; Gombac V; Lebedev OI; Maccato C; Montini T; Van Tendeloo G; Tondello E J Am Chem Soc; 2011 Dec; 133(48):19362-5. PubMed ID: 22053896 [TBL] [Abstract][Full Text] [Related]
8. Water splitting on semiconductor catalysts under visible-light irradiation. Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754 [TBL] [Abstract][Full Text] [Related]
9. Splitting water with cobalt. Artero V; Chavarot-Kerlidou M; Fontecave M Angew Chem Int Ed Engl; 2011 Aug; 50(32):7238-66. PubMed ID: 21748828 [TBL] [Abstract][Full Text] [Related]
10. CuO quantum-dot-sensitized mesoporous ZnO for visible-light photocatalysis. Liu Y; Shi J; Peng Q; Li Y Chemistry; 2013 Mar; 19(13):4319-26. PubMed ID: 23447144 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen production by tailoring the brookite and Cu Hinojosa-Reyes M; Camposeco-Solís R; Zanella R; Rodríguez González V Chemosphere; 2017 Oct; 184():992-1002. PubMed ID: 28658742 [TBL] [Abstract][Full Text] [Related]
12. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts. Wang X; Shih K; Li XY Water Sci Technol; 2010; 61(9):2303-8. PubMed ID: 20418627 [TBL] [Abstract][Full Text] [Related]
13. Optimizing the deposition of hydrogen evolution sites on suspended semiconductor particles using on-line photocatalytic reforming of aqueous methanol solutions. Busser GW; Mei B; Muhler M ChemSusChem; 2012 Nov; 5(11):2200-6. PubMed ID: 23090922 [TBL] [Abstract][Full Text] [Related]
14. Catalytic combustion of styrene over copper based catalyst: inhibitory effect of water vapor. Pan H; Xu M; Li Z; Huang S; He C Chemosphere; 2009 Jul; 76(5):721-6. PubMed ID: 19427660 [TBL] [Abstract][Full Text] [Related]
15. Hybrid Cu(x)O/TiO₂ nanocomposites as risk-reduction materials in indoor environments. Qiu X; Miyauchi M; Sunada K; Minoshima M; Liu M; Lu Y; Li D; Shimodaira Y; Hosogi Y; Kuroda Y; Hashimoto K ACS Nano; 2012 Feb; 6(2):1609-18. PubMed ID: 22208891 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of hydrogen production of methanol reformation using Cu/ZnO/Al2O3 catalyst. Wu HS; Chung SC J Comb Chem; 2007; 9(6):990-7. PubMed ID: 17900166 [TBL] [Abstract][Full Text] [Related]
17. In situ synthesis of Cu nanocatalysts on ZnO whiskers embedded in a microstructured paper composite for autothermal hydrogen production. Koga H; Kitaoka T; Wariishi H Chem Commun (Camb); 2008 Nov; (43):5616-8. PubMed ID: 18997970 [TBL] [Abstract][Full Text] [Related]
18. XPS study of interface and ligand effects in supported Cu2O and CuO nanometric particles. Morales J; Espinos JP; Caballero A; Gonzalez-Elipe AR; Mejias JA J Phys Chem B; 2005 Apr; 109(16):7758-65. PubMed ID: 16851901 [TBL] [Abstract][Full Text] [Related]
19. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol. Rajeshwar K; de Tacconi NR; Ghadimkhani G; Chanmanee W; Janáky C Chemphyschem; 2013 Jul; 14(10):2251-9. PubMed ID: 23712877 [TBL] [Abstract][Full Text] [Related]
20. Designing Highly Efficient Cu Kim J; Whang DR; Park SY ChemSusChem; 2017 May; 10(9):1883-1886. PubMed ID: 28332772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]