BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 19235938)

  • 1. Magnetic circular dichroism spectrum of plastocyanin by calculation.
    Seth M; Ziegler T
    Inorg Chem; 2009 Mar; 48(5):1793-5. PubMed ID: 19235938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical study of the magnetic circular dichroism spectrum for sulfite oxidase based on time-dependent density functional theory.
    Hernandez-Marin E; Seth M; Ziegler T
    Inorg Chem; 2009 Apr; 48(7):2880-6. PubMed ID: 19236042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of magnetically perturbed time-dependent density functional theory to magnetic circular dichroism. II. Calculation of A terms.
    Seth M; Krykunov M; Ziegler T; Autschbach J
    J Chem Phys; 2008 Jun; 128(23):234102. PubMed ID: 18570486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of excitation energies of open-shell molecules with spatially degenerate ground states. II. Transformed reference via intermediate configuration Kohn-Sham time dependent density functional theory oscillator strengths and magnetic circular dichroism C terms.
    Seth M; Ziegler T
    J Chem Phys; 2006 Apr; 124(14):144105. PubMed ID: 16626178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of magnetically perturbed time-dependent density functional theory to magnetic circular dichroism. III. Temperature-dependent magnetic circular dichroism induced by spin-orbit coupling.
    Seth M; Ziegler T; Autschbach J
    J Chem Phys; 2008 Sep; 129(10):104105. PubMed ID: 19044906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of magnetically perturbed time-dependent density functional theory to magnetic circular dichroism: calculation of B terms.
    Seth M; Krykunov M; Ziegler T; Autschbach J; Banerjee A
    J Chem Phys; 2008 Apr; 128(14):144105. PubMed ID: 18412421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic circular dichroism of porphyrins containing M = Ca, Ni, and Zn. A computational study based on time-dependent density functional theory.
    Peralta GA; Seth M; Ziegler T
    Inorg Chem; 2007 Oct; 46(22):9111-25. PubMed ID: 17914806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of the A term of magnetic circular dichroism based on time dependent-density functional theory I. Formulation and implementation.
    Seth M; Ziegler T; Banerjee A; Autschbach J; Van Gisbergen SJ; Baerends EJ
    J Chem Phys; 2004 Jun; 120(23):10942-54. PubMed ID: 15268124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic circular dichroism in real-time time-dependent density functional theory.
    Lee KM; Yabana K; Bertsch GF
    J Chem Phys; 2011 Apr; 134(14):144106. PubMed ID: 21495741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of the magnetic circular dichroism B term from the imaginary part of the Verdet constant using damped time-dependent density functional theory.
    Krykunov M; Seth M; Ziegler T; Autschbach J
    J Chem Phys; 2007 Dec; 127(24):244102. PubMed ID: 18163665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic circular dichroism of phthalocyanine (m=mg, zn) and tetraazaporphyrin (m=mg, zn, ni) metal complexes. A computational study based on time-dependent density functional theory.
    Peralta GA; Seth M; Zhekova H; Ziegler T
    Inorg Chem; 2008 May; 47(10):4185-98. PubMed ID: 18433093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic circular dichroism spectra from the complex polarization propagator.
    Jiemchooroj A; Norman P
    J Chem Phys; 2007 Apr; 126(13):134102. PubMed ID: 17430011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multireference ab initio studies of zero-field splitting and magnetic circular dichroism spectra of tetrahedral Co(II) complexes.
    Sundararajan M; Ganyushin D; Ye S; Neese F
    Dalton Trans; 2009 Aug; (30):6021-36. PubMed ID: 19623403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory for vibrationally resolved two-photon circular dichroism spectra. Application to (R)-(+)-3-methylcyclopentanone.
    Lin N; Santoro F; Rizzo A; Luo Y; Zhao X; Barone V
    J Phys Chem A; 2009 Apr; 113(16):4198-207. PubMed ID: 19253990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic circular dichroism and electronic structure of [Re2X4(PMe3)4]+ (X = Cl, Br).
    Habel-Rodriguez D; Poineau F; Johnstone EV; Czerwinski KR; Sattelberger AP; Kirk ML
    Inorg Chem; 2014 Feb; 53(3):1260-2. PubMed ID: 24437639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation of magnetic circular dichroism by sum-over-states summations.
    Štěpánek P; Bouř P
    J Comput Chem; 2013 Jul; 34(18):1531-9. PubMed ID: 23526638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of standard and damped response formulations of magnetic circular dichroism.
    Kjærgaard T; Kristensen K; Kauczor J; Jørgensen P; Coriani S; Thorvaldsen AJ
    J Chem Phys; 2011 Jul; 135(2):024112. PubMed ID: 21766930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time Dependent Density Functional Theory Study of Magnetic Circular Dichroism Spectra of Gold Clusters Au
    Karimova NV; Aikens CM
    J Phys Chem A; 2016 Dec; 120(48):9625-9635. PubMed ID: 27933920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of magnetic circular dichroism spectroscopy to porphyrins and phthalocyanines.
    Kobayashi N; Nakai K
    Chem Commun (Camb); 2007 Oct; (40):4077-92. PubMed ID: 17925938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electronic spectrum of the fluoroborane free radical. I. Theoretical calculation of the vibronic energy levels of the ground and first excited electronic states.
    Sunahori FX; Clouthier DJ; Carter S; Tarroni R
    J Chem Phys; 2009 Apr; 130(16):164309. PubMed ID: 19405581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.