These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19236032)

  • 1. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection.
    Smythe EJ; Dickey MD; Bao J; Whitesides GM; Capasso F
    Nano Lett; 2009 Mar; 9(3):1132-8. PubMed ID: 19236032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering.
    Yang X; Ileri N; Larson CC; Carlson TC; Britten JA; Chang AS; Gu C; Bond TC
    Opt Express; 2012 Oct; 20(22):24819-26. PubMed ID: 23187247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes.
    Quero G; Zito G; Managò S; Galeotti F; Pisco M; De Luca AC; Cusano A
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy.
    Zheng M; Zhu X; Chen Y; Xiang Q; Duan H
    Nanotechnology; 2017 Jan; 28(4):045303. PubMed ID: 27981948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays.
    Yu Q; Braswell S; Christin B; Xu J; Wallace PM; Gong H; Kaminsky D
    Nanotechnology; 2010 Sep; 21(35):355301. PubMed ID: 20683142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High directivity optical antenna substrates for surface enhanced Raman scattering.
    Wang D; Zhu W; Chu Y; Crozier KB
    Adv Mater; 2012 Aug; 24(32):4376-80. PubMed ID: 22760820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap.
    Seok TJ; Jamshidi A; Eggleston M; Wu MC
    Opt Express; 2013 Jul; 21(14):16561-9. PubMed ID: 23938507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical properties of surface plasmon resonances of coupled metallic nanorods.
    Smythe EJ; Cubukcu E; Capasso F
    Opt Express; 2007 Jun; 15(12):7439-47. PubMed ID: 19547067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber-optic plasmonic probe with nanogap-rich Au nanoislands for on-site surface-enhanced Raman spectroscopy using repeated solid-state dewetting.
    Kwak J; Lee W; Kim JB; Bae SI; Jeong KH
    J Biomed Opt; 2019 Mar; 24(3):1-6. PubMed ID: 30873763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wafer-scale fabrication of high-quality tunable gold nanogap arrays for surface-enhanced Raman scattering.
    Le-The H; Lozeman JJA; Lafuente M; Muñoz P; Bomer JG; Duy-Tong H; Berenschot E; van den Berg A; Tas NR; Odijk M; Eijkel JCT
    Nanoscale; 2019 Jul; 11(25):12152-12160. PubMed ID: 31194202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film.
    Park S; Lee J; Ko H
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):44088-44095. PubMed ID: 29172436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of Interstitial Hot-Spots Using the Reduced Gap-Size between Plasmonic Microbeads Pattern for Surface-Enhanced Raman Scattering Analysis.
    Lee T; Jung S; Kwon S; Kim W; Park J; Lim H; Lee J
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30823667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lab-on-Fiber Sensors with Ag/Au Nanocap Arrays Based on the Two Deposits of Polystyrene Nanospheres.
    Shi M; Gao S; Shang L; Ma L; Wang W; Liu G; Li Z
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high sensitive fiber SERS probe based on silver nanorod arrays.
    Chu HV; Liu Y; Huang Y; Zhao Y
    Opt Express; 2007 Sep; 15(19):12230-9. PubMed ID: 19547590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexagonal arrays of plasmonic gold nanopyramids on flexible substrates for surface-enhanced Raman scattering.
    Simo PC; Laible F; Horneber A; Burkhardt CJ; Fleischer M
    Nanotechnology; 2021 Dec; 33(9):. PubMed ID: 34727539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative electron and photon excitation of localized surface plasmon resonance in lithographic gold arrays for enhanced Raman scattering.
    Zeng Y; Madsen SJ; Yankovich AB; Olsson E; Sinclair R
    Nanoscale; 2020 Dec; 12(46):23768-23779. PubMed ID: 33232431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering.
    Hu Z; Liu Z; Li L; Quan B; Li Y; Li J; Gu C
    Small; 2014 Oct; 10(19):3933-42. PubMed ID: 24995658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic dimer antennas for surface enhanced Raman scattering.
    Höflich K; Becker M; Leuchs G; Christiansen S
    Nanotechnology; 2012 May; 23(18):185303. PubMed ID: 22498764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of beamed Raman scattering.
    Zhu W; Wang D; Crozier KB
    Nano Lett; 2012 Dec; 12(12):6235-43. PubMed ID: 23101429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cost-effective large-area Ag nanotube arrays for SERS detections: effects of nanotube geometry.
    Yang YX; Chu JP
    Nanotechnology; 2021 Sep; 32(47):. PubMed ID: 34284366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.