These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
612 related articles for article (PubMed ID: 19236045)
1. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions. Miyoshi D; Nakamura K; Tateishi-Karimata H; Ohmichi T; Sugimoto N J Am Chem Soc; 2009 Mar; 131(10):3522-31. PubMed ID: 19236045 [TBL] [Abstract][Full Text] [Related]
2. Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions. Miyoshi D; Karimata H; Sugimoto N J Am Chem Soc; 2006 Jun; 128(24):7957-63. PubMed ID: 16771510 [TBL] [Abstract][Full Text] [Related]
3. Effects of cosolutes on the thermodynamic stability of parallel DNA duplex and triplex. Nakamura K; Karimata H; Ohmichi T; Miyoshi D; Sugimoto N Nucleic Acids Symp Ser (Oxf); 2007; (51):167-8. PubMed ID: 18029639 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamics of DNA structures under molecular crowding conditions with neutral and positive charged cosolutes. Miyoshi D; Nakamura K; Muhuli S; Karimata HT; Sugimoto N Nucleic Acids Symp Ser (Oxf); 2008; (52):413-4. PubMed ID: 18776429 [TBL] [Abstract][Full Text] [Related]
5. Factors regulating thermodynamic stability of DNA structures under molecular crowding conditions. Miyoshi D; Karimata H; Sugimoto N Nucleic Acids Symp Ser (Oxf); 2006; (50):203-4. PubMed ID: 17150888 [TBL] [Abstract][Full Text] [Related]
6. Stabilization of three-way junctions of DNA under molecular crowding conditions. Muhuri S; Mimura K; Miyoshi D; Sugimoto N J Am Chem Soc; 2009 Jul; 131(26):9268-80. PubMed ID: 19566098 [TBL] [Abstract][Full Text] [Related]
7. Hydration regulates the thermodynamic stability of DNA structures under molecular crowding conditions. Miyoshi D; Karimata H; Sugimoto N Nucleosides Nucleotides Nucleic Acids; 2007; 26(6-7):589-95. PubMed ID: 18066861 [TBL] [Abstract][Full Text] [Related]
8. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex. Walter A; Schütz H; Simon H; Birch-Hirschfeld E J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482 [TBL] [Abstract][Full Text] [Related]
9. Hoogsteen DNA duplexes of 3'-3'- and 5'-5'-linked oligonucleotides and trip formation with RNA and DNA pyrimidine single strands: experimental and molecular modeling studies. Kandimalla ER; Agrawal S Biochemistry; 1996 Dec; 35(48):15332-9. PubMed ID: 8952484 [TBL] [Abstract][Full Text] [Related]
10. Exploring Hoogsteen and reversed-Hoogsteen duplex and triplex formation with tricyclo-DNA purine sequences. Renneberg D; Leumann CJ Chembiochem; 2004 Aug; 5(8):1114-8. PubMed ID: 15300836 [TBL] [Abstract][Full Text] [Related]
11. The first example of a Hoogsteen base-paired DNA duplex in dynamic equilibrium with a Watson-Crick base-paired duplex--a structural (NMR), kinetic and thermodynamic study. Isaksson J; Zamaratski E; Maltseva TV; Agback P; Kumar A; Chattopadhyaya J J Biomol Struct Dyn; 2001 Jun; 18(6):783-806. PubMed ID: 11444368 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic properties of a conformationally constrained intramolecular DNA triple helix. Völker J; Osborne SE; Glick GD; Breslauer KJ Biochemistry; 1997 Jan; 36(4):756-67. PubMed ID: 9020773 [TBL] [Abstract][Full Text] [Related]
13. Base-pair dynamics in an antiparallel DNA triplex measured by catalyzed imino proton exchange monitored via 1H NMR spectroscopy. Wärmländer S; Sandström K; Leijon M; Gräslund A Biochemistry; 2003 Nov; 42(43):12589-95. PubMed ID: 14580205 [TBL] [Abstract][Full Text] [Related]
14. Parallel DNA double helices incorporating isoG or m5isoC bases studied by FTIR, CD and molecular modeling. Geinguenaud F; Mondragon-Sanchez JA; Liquier J; Shchyolkina AK; Klement R; Arndt-Jovin DJ; Jovin TM; Taillandier E Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):579-87. PubMed ID: 15649787 [TBL] [Abstract][Full Text] [Related]
15. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts. Millen AL; Churchill CD; Manderville RA; Wetmore SD J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic stability of Hoogsteen and Watson-Crick base pairs in the presence of histone H3-mimicking peptide. Pramanik S; Nakamura K; Usui K; Nakano S; Saxena S; Matsui J; Miyoshi D; Sugimoto N Chem Commun (Camb); 2011 Mar; 47(10):2790-2. PubMed ID: 21308127 [TBL] [Abstract][Full Text] [Related]
17. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes. Sugimoto N; Wu P; Hara H; Kawamoto Y Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909 [TBL] [Abstract][Full Text] [Related]
18. Structures and stabilities of small DNA dumbbells with Watson-Crick and Hoogsteen base pairs. Escaja N; Gómez-Pinto I; Rico M; Pedroso E; González C Chembiochem; 2003 Jul; 4(7):623-32. PubMed ID: 12851932 [TBL] [Abstract][Full Text] [Related]
19. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops. Vecenie CJ; Morrow CV; Zyra A; Serra MJ Biochemistry; 2006 Feb; 45(5):1400-7. PubMed ID: 16445282 [TBL] [Abstract][Full Text] [Related]
20. Solution structure of a DNA double helix incorporating four consecutive non-Watson-Crick base-pairs. Chou SH; Chin KH J Mol Biol; 2001 Sep; 312(4):769-81. PubMed ID: 11575931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]