These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 19236064)

  • 1. Practical chemical sensors from chemically derived graphene.
    Fowler JD; Allen MJ; Tung VC; Yang Y; Kaner RB; Weiller BH
    ACS Nano; 2009 Feb; 3(2):301-6. PubMed ID: 19236064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of explosives using electrochemically reduced graphene.
    Chen TW; Sheng ZH; Wang K; Wang FB; Xia XH
    Chem Asian J; 2011 May; 6(5):1210-6. PubMed ID: 21387564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A green approach to the synthesis of graphene nanosheets.
    Guo HL; Wang XF; Qian QY; Wang FB; Xia XH
    ACS Nano; 2009 Sep; 3(9):2653-9. PubMed ID: 19691285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly conducting graphene sheets and Langmuir-Blodgett films.
    Li X; Zhang G; Bai X; Sun X; Wang X; Wang E; Dai H
    Nat Nanotechnol; 2008 Sep; 3(9):538-42. PubMed ID: 18772914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations.
    Lu G; Park S; Yu K; Ruoff RS; Ocola LE; Rosenmann D; Chen J
    ACS Nano; 2011 Feb; 5(2):1154-64. PubMed ID: 21204575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-assisted synthesis of highly water-soluble graphene towards electrical DNA sensor.
    Choi BG; Park H; Yang MH; Jung YM; Lee SY; Hong WH; Park TJ
    Nanoscale; 2010 Dec; 2(12):2692-7. PubMed ID: 20976351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic ring resonator sensors for rapid DNT vapor detection.
    Sun Y; Liu J; Frye-Mason G; Ja SJ; Thompson AK; Fan X
    Analyst; 2009 Jul; 134(7):1386-91. PubMed ID: 19562206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact and edge effects in graphene devices.
    Lee EJ; Balasubramanian K; Weitz RT; Burghard M; Kern K
    Nat Nanotechnol; 2008 Aug; 3(8):486-90. PubMed ID: 18685636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory.
    Kim WY; Kim KS
    J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of disposable sensors for biomolecule detection using hydrazine electrocatalyst.
    Shiddiky MJ; Rahman MA; Cheol CS; Shim YB
    Anal Biochem; 2008 Aug; 379(2):170-5. PubMed ID: 18513487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films.
    Su PG; Peng SL
    Talanta; 2015 Jan; 132():398-405. PubMed ID: 25476324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: effects of particle size and hydrodynamic diffusion.
    Krittayavathananon A; Srimuk P; Luanwuthi S; Sawangphruk M
    Anal Chem; 2014 Dec; 86(24):12272-8. PubMed ID: 25391449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High yield preparation of macroscopic graphene oxide membranes.
    Luo Z; Lu Y; Somers LA; Johnson AT
    J Am Chem Soc; 2009 Jan; 131(3):898-9. PubMed ID: 19128004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices.
    Strong V; Dubin S; El-Kady MF; Lech A; Wang Y; Weiller BH; Kaner RB
    ACS Nano; 2012 Feb; 6(2):1395-403. PubMed ID: 22242925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gating of single-layer graphene with single-stranded deoxyribonucleic acids.
    Lin J; Teweldebrhan D; Ashraf K; Liu G; Jing X; Yan Z; Li R; Ozkan M; Lake RK; Balandin AA; Ozkan CS
    Small; 2010 May; 6(10):1150-5. PubMed ID: 20473987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-sensitive hydrazine chemical sensor based on high-aspect-ratio ZnO nanowires.
    Umar A; Rahman MM; Hahn YB
    Talanta; 2009 Feb; 77(4):1376-80. PubMed ID: 19084652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene versus carbon nanotubes for chemical sensor and fuel cell applications.
    Kauffman DR; Star A
    Analyst; 2010 Nov; 135(11):2790-7. PubMed ID: 20733998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid in situ detection of ultratrace 2,4-dinitrotoluene solids by a sandwiched paper-like electrochemical sensor.
    Wang J; Jin W; Zhang X; Hu C; Luo Q; Lin Y; Hu S
    Anal Chem; 2014 Aug; 86(16):8383-90. PubMed ID: 25072393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures.
    Chen W; Yan L
    Nanoscale; 2011 Aug; 3(8):3132-7. PubMed ID: 21698339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.