These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Investigation of the internal heterostructure of highly luminescent quantum dot-quantum well nanocrystals. Santra PK; Viswanatha R; Daniels SM; Pickett NL; Smith JM; O'Brien P; Sarma DD J Am Chem Soc; 2009 Jan; 131(2):470-7. PubMed ID: 19140789 [TBL] [Abstract][Full Text] [Related]
23. Fluorescence quenching of CdSe quantum dots by nitroaromatic explosives and their relative compounds. Shi GH; Shang ZB; Wang Y; Jin WJ; Zhang TC Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):247-52. PubMed ID: 17870656 [TBL] [Abstract][Full Text] [Related]
24. Mechanism and origin of exciton spin relaxation in CdSe nanorods. Kim J; Wong CY; Nair PS; Fritz KP; Kumar S; Scholes GD J Phys Chem B; 2006 Dec; 110(50):25371-82. PubMed ID: 17165984 [TBL] [Abstract][Full Text] [Related]
25. Size dependence of molar absorption coefficients of CdSe semiconductor quantum rods. Shaviv E; Salant A; Banin U Chemphyschem; 2009 May; 10(7):1028-31. PubMed ID: 19347917 [TBL] [Abstract][Full Text] [Related]
26. Study of colloidal quantum-dot surfaces using an innovative thin-film positron 2D-ACAR method. Eijt SW; van Veen AT; Schut H; Mijnarends PE; Denison AB; Barbiellini B; Bansil A Nat Mater; 2006 Jan; 5(1):23-6. PubMed ID: 16380729 [TBL] [Abstract][Full Text] [Related]
27. Photo-gated charge transfer of organized assemblies of CdSe quantum dots. Pradhan S; Chen S; Wang S; Zou J; Kauzlarich SM; Louie AY Langmuir; 2006 Jan; 22(2):787-93. PubMed ID: 16401132 [TBL] [Abstract][Full Text] [Related]
28. Quantum dot fluorescence as a function of alkyl chain length in aqueous environments. Blum AS; Moore MH; Ratna BR Langmuir; 2008 Sep; 24(17):9194-7. PubMed ID: 18683956 [TBL] [Abstract][Full Text] [Related]
29. Quenching of CdSe quantum dot emission, a new approach for biosensing. Dyadyusha L; Yin H; Jaiswal S; Brown T; Baumberg JJ; Booy FP; Melvin T Chem Commun (Camb); 2005 Jul; (25):3201-3. PubMed ID: 15968371 [TBL] [Abstract][Full Text] [Related]
30. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. Kongkanand A; Tvrdy K; Takechi K; Kuno M; Kamat PV J Am Chem Soc; 2008 Mar; 130(12):4007-15. PubMed ID: 18311974 [TBL] [Abstract][Full Text] [Related]
31. Charge carrier resolved relaxation of the first excitonic state in CdSe quantum dots probed with near-infrared transient absorption spectroscopy. McArthur EA; Morris-Cohen AJ; Knowles KE; Weiss EA J Phys Chem B; 2010 Nov; 114(45):14514-20. PubMed ID: 20507144 [TBL] [Abstract][Full Text] [Related]
32. Single molecular stamping of a sub-10-nm colloidal quantum dot array. Hoshino K; Turner TC; Kim S; Gopal A; Zhang X Langmuir; 2008 Dec; 24(23):13804-8. PubMed ID: 18991412 [TBL] [Abstract][Full Text] [Related]
33. Fluorescence lifetimes and correlated photon statistics from single CdSe/oligo(phenylene vinylene) composite nanostructures. Odoi MY; Hammer NI; Early KT; McCarthy KD; Tangirala R; Emrick T; Barnes MD Nano Lett; 2007 Sep; 7(9):2769-73. PubMed ID: 17655370 [TBL] [Abstract][Full Text] [Related]
34. Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand. Frederick MT; Weiss EA ACS Nano; 2010 Jun; 4(6):3195-200. PubMed ID: 20503978 [TBL] [Abstract][Full Text] [Related]
35. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach. Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225 [TBL] [Abstract][Full Text] [Related]
36. Fluorescence-emission control of single CdSe nanocrystals using gold-modified AFM tips. Eckel R; Walhorn V; Pelargus C; Martini J; Enderlein J; Nann T; Anselmetti D; Ros R Small; 2007 Jan; 3(1):44-9. PubMed ID: 17294466 [No Abstract] [Full Text] [Related]
37. Photophysics of (CdSe)ZnS colloidal quantum dots in an aqueous environment stabilized with amino acids and genetically-modified proteins. Ai X; Xu Q; Jones M; Song Q; Ding SY; Ellingson RJ; Himmel M; Rumbles G Photochem Photobiol Sci; 2007 Sep; 6(9):1027-33. PubMed ID: 17721603 [TBL] [Abstract][Full Text] [Related]
38. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. Huang J; Huang Z; Yang Y; Zhu H; Lian T J Am Chem Soc; 2010 Apr; 132(13):4858-64. PubMed ID: 20218563 [TBL] [Abstract][Full Text] [Related]
39. Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals. Querner C; Reiss P; Sadki S; Zagorska M; Pron A Phys Chem Chem Phys; 2005 Sep; 7(17):3204-9. PubMed ID: 16240033 [TBL] [Abstract][Full Text] [Related]
40. Energy relaxation in CdSe nanocrystals: the effects of morphology and film preparation. Spann BT; Chen L; Ruan X; Xu X Opt Express; 2013 Jan; 21 Suppl 1():A15-22. PubMed ID: 23389266 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]