These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 19236486)
1. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. Cordente AG; Heinrich A; Pretorius IS; Swiegers JH FEMS Yeast Res; 2009 May; 9(3):446-59. PubMed ID: 19236486 [TBL] [Abstract][Full Text] [Related]
2. MET2 affects production of hydrogen sulfide during wine fermentation. Huang C; Roncoroni M; Gardner RC Appl Microbiol Biotechnol; 2014 Aug; 98(16):7125-35. PubMed ID: 24841117 [TBL] [Abstract][Full Text] [Related]
3. Identification of MET10-932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of Saccharomyces cerevisiae. Linderholm A; Dietzel K; Hirst M; Bisson LF Appl Environ Microbiol; 2010 Dec; 76(23):7699-707. PubMed ID: 20889780 [TBL] [Abstract][Full Text] [Related]
4. Effect of nitrogen supplementation and Saccharomyces species on hydrogen sulfide and other volatile sulfur compounds in shiraz fermentation and wine. Ugliano M; Fedrizzi B; Siebert T; Travis B; Magno F; Versini G; Henschke PA J Agric Food Chem; 2009 Jun; 57(11):4948-55. PubMed ID: 19391591 [TBL] [Abstract][Full Text] [Related]
5. Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Linderholm AL; Findleton CL; Kumar G; Hong Y; Bisson LF Appl Environ Microbiol; 2008 Mar; 74(5):1418-27. PubMed ID: 18192430 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard. Cappello MS; Bleve G; Grieco F; Dellaglio F; Zacheo G J Appl Microbiol; 2004; 97(6):1274-80. PubMed ID: 15546418 [TBL] [Abstract][Full Text] [Related]
7. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. Jiranek V; Langridge P; Henschke PA Appl Environ Microbiol; 1995 Feb; 61(2):461-7. PubMed ID: 7574581 [TBL] [Abstract][Full Text] [Related]
8. Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the alpha subunit of sulfite reductase and specify potential binding sites for FAD and NADPH. Hansen J; Cherest H; Kielland-Brandt MC J Bacteriol; 1994 Oct; 176(19):6050-8. PubMed ID: 7928966 [TBL] [Abstract][Full Text] [Related]
9. Survey of hydrogen sulphide production by wine yeasts. Mendes-Ferreira A; Mendes-Faia A; Leão C J Food Prot; 2002 Jun; 65(6):1033-7. PubMed ID: 12092717 [TBL] [Abstract][Full Text] [Related]
10. Identification and characterization of a sulfite reductase gene and new insights regarding the sulfur-containing amino acid metabolism in the basidiomycetous yeast Cryptococcus neoformans. Nguyen PT; Toh-E A; Nguyen NH; Imanishi-Shimizu Y; Watanabe A; Kamei K; Shimizu K Curr Genet; 2021 Feb; 67(1):115-128. PubMed ID: 33001274 [TBL] [Abstract][Full Text] [Related]
11. The effect of polysaccharide-degrading wine yeast transformants on the efficiency of wine processing and wine flavour. Louw C; La Grange D; Pretorius IS; van Rensburg P J Biotechnol; 2006 Oct; 125(4):447-61. PubMed ID: 16644051 [TBL] [Abstract][Full Text] [Related]
12. Induction of production and secretion beta(1-->4) glucanase with Saccharomyces cerevesiae by replacing the MET10 gene with egl1 gene from Trichoderma reesei. Lu Y; Wang TH; Ding XL Lett Appl Microbiol; 2009 Dec; 49(6):702-7. PubMed ID: 19780951 [TBL] [Abstract][Full Text] [Related]
13. Modulation of volatile sulfur compounds by wine yeast. Swiegers JH; Pretorius IS Appl Microbiol Biotechnol; 2007 Apr; 74(5):954-60. PubMed ID: 17262212 [TBL] [Abstract][Full Text] [Related]
14. Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. González SS; Gallo L; Climent MA; Barrio E; Querol A Int J Food Microbiol; 2007 May; 116(1):11-8. PubMed ID: 17346840 [TBL] [Abstract][Full Text] [Related]
15. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. Cordente AG; Cordero-Bueso G; Pretorius IS; Curtin CD FEMS Yeast Res; 2013 Feb; 13(1):62-73. PubMed ID: 23146134 [TBL] [Abstract][Full Text] [Related]
16. Development of a method to measure hydrogen sulfide in wine fermentation. Park SK J Microbiol Biotechnol; 2008 Sep; 18(9):1550-4. PubMed ID: 18852511 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of MET10 in brewer's yeast specifically increases SO2 formation during beer production. Hansen J; Kielland-Brandt MC Nat Biotechnol; 1996 Nov; 14(11):1587-91. PubMed ID: 9634827 [TBL] [Abstract][Full Text] [Related]
18. Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production. Malherbe DF; du Toit M; Cordero Otero RR; van Rensburg P; Pretorius IS Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):502-11. PubMed ID: 12764565 [TBL] [Abstract][Full Text] [Related]
19. Sulfate transport mutants affect hydrogen sulfide and sulfite production during alcoholic fermentation. Walker ME; Zhang J; Sumby KM; Lee A; Houlès A; Li S; Jiranek V Yeast; 2021 Jun; 38(6):367-381. PubMed ID: 33560525 [TBL] [Abstract][Full Text] [Related]
20. A homozygous diploid subset of commercial wine yeast strains. Bradbury JE; Richards KD; Niederer HA; Lee SA; Rod Dunbar P; Gardner RC Antonie Van Leeuwenhoek; 2006 Jan; 89(1):27-37. PubMed ID: 16328862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]