These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19237196)

  • 1. Bioaccumulation assessment via an adapted multi-species soil system (MS.3) and its application using cadmium.
    Alonso E; González-Núñez M; Carbonell G; Fernández C; Tarazona JV
    Ecotoxicol Environ Saf; 2009 May; 72(4):1038-44. PubMed ID: 19237196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium bioaccumulation factors for terrestrial species: application of the mechanistic bioaccumulation model OMEGA to explain field data.
    Veltman K; Huijbregts MA; Hendriks AJ
    Sci Total Environ; 2008 Dec; 406(3):413-8. PubMed ID: 18722646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting behaviour of cadmium and zinc in a soil-plant-arthropod system.
    Green ID; Jeffries C; Diaz A; Tibbett M
    Chemosphere; 2006 Aug; 64(7):1115-21. PubMed ID: 16434077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake and elimination of cadmium and zinc by Eisenia andrei during exposure to low concentrations in artificial soil.
    Smith BA; Egeler P; Gilberg D; Hendershot W; Stephenson GL
    Arch Environ Contam Toxicol; 2010 Aug; 59(2):264-73. PubMed ID: 20130851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the concentration in seven-spotted ladybirds (Coccinella septempunctata L.) of Cd and Zn transferred through the food chain.
    Green ID; Diaz A; Tibbett M
    Environ Pollut; 2010 Jan; 158(1):135-41. PubMed ID: 19683847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A probabilistic model for deriving soil quality criteria based on secondary poisoning of top predators. II. Calculations for dichlorodiphenyltrichloroethane (DDT) and cadmium.
    Jongbloed RH; Traas TP; Luttik R
    Ecotoxicol Environ Saf; 1996 Aug; 34(3):279-306. PubMed ID: 8812196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and dynamic aspects of soil-plant-snail transfer of cadmium in the field.
    Gimbert F; Mench M; Coeurdassier M; Badot PM; de Vaufleury A
    Environ Pollut; 2008 Apr; 152(3):736-45. PubMed ID: 17693002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sewage sludge applied to agricultural soil: Ecotoxicological effects on representative soil organisms.
    Carbonell G; Pro J; Gómez N; Babín MM; Fernández C; Alonso E; Tarazona JV
    Ecotoxicol Environ Saf; 2009 May; 72(4):1309-19. PubMed ID: 19261330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance of Eisenia fetida (Oligochaeta) to cadmium after long-term exposure.
    Reinecke SA; Prinsloo MW; Reinecke AJ
    Ecotoxicol Environ Saf; 1999 Jan; 42(1):75-80. PubMed ID: 9931242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trophic barriers to fertilizer Cd bioaccumulation through the food chain: a case study using a plant--insect predator pathway.
    Merrington G; Miller D; McLaughlin MJ; Keller MA
    Arch Environ Contam Toxicol; 2001 Aug; 41(2):151-6. PubMed ID: 11462138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity and bioaccumulation of biosolids-borne triclocarban (TCC) in terrestrial organisms.
    Snyder EH; O'Connor GA; McAvoy DC
    Chemosphere; 2011 Jan; 82(3):460-7. PubMed ID: 21035164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of post-Katrina flooded soils for contaminants and toxicity to the soil invertebrates Eisenia fetida and Caenorhabditis elegans.
    Harmon SM; Wyatt DE
    Chemosphere; 2008 Feb; 70(10):1857-64. PubMed ID: 17881035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment and management of risk to wildlife from cadmium.
    Burger J
    Sci Total Environ; 2008 Jan; 389(1):37-45. PubMed ID: 17910979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain.
    Unrine JM; Shoults-Wilson WA; Zhurbich O; Bertsch PM; Tsyusko OV
    Environ Sci Technol; 2012 Sep; 46(17):9753-60. PubMed ID: 22897478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of incubation time and organism density on the bioaccumulation of soil-borne p,p'-DDE by the earthworm, Eisenia fetida.
    Kelsey JW; Peters R; Slizovskiy IB
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):266-9. PubMed ID: 18587515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay.
    Fourie F; Reinecke SA; Reinecke AJ
    Ecotoxicol Environ Saf; 2007 Jul; 67(3):361-8. PubMed ID: 17173970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallothionein response following cadmium exposure in the oligochaete Eisenia fetida.
    Demuynck S; Grumiaux F; Mottier V; Schikorski D; Lemière S; Leprêtre A
    Comp Biochem Physiol C Toxicol Pharmacol; 2006 Sep; 144(1):34-46. PubMed ID: 16814611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccumulation of 14C60 by the earthworm Eisenia fetida.
    Li D; Fortner JD; Johnson DR; Chen C; Li Q; Alvarez PJ
    Environ Sci Technol; 2010 Dec; 44(23):9170-5. PubMed ID: 21049992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation and detoxification of cadmium by larvae of Prodenia litura (Lepidoptera: Noctuidae) feeding on Cd-enriched amaranth leaves.
    Ding P; Zhuang P; Li Z; Xia H; Lu H
    Chemosphere; 2013 Mar; 91(1):28-34. PubMed ID: 23276459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of studies performed to assess metal uptake by earthworms.
    Nahmani J; Hodson ME; Black S
    Environ Pollut; 2007 Jan; 145(2):402-24. PubMed ID: 16815606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.