These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 19237315)
1. Applying GPS to enhance understanding of transport-related physical activity. Duncan MJ; Badland HM; Mummery WK J Sci Med Sport; 2009 Sep; 12(5):549-56. PubMed ID: 19237315 [TBL] [Abstract][Full Text] [Related]
2. Combining GPS, GIS, and accelerometry: methodological issues in the assessment of location and intensity of travel behaviors. Oliver M; Badland H; Mavoa S; Duncan MJ; Duncan S J Phys Act Health; 2010 Jan; 7(1):102-8. PubMed ID: 20231761 [TBL] [Abstract][Full Text] [Related]
3. Combining GPS with heart rate monitoring to measure physical activity in children: A feasibility study. Duncan JS; Badland HM; Schofield G J Sci Med Sport; 2009 Sep; 12(5):583-5. PubMed ID: 19036637 [TBL] [Abstract][Full Text] [Related]
4. Tracking human activity and well-being in natural environments using wearable sensors and experience sampling. Doherty ST; Lemieux CJ; Canally C Soc Sci Med; 2014 Apr; 106():83-92. PubMed ID: 24549253 [TBL] [Abstract][Full Text] [Related]
5. Describing patterns of physical activity in adolescents using global positioning systems and accelerometry. Maddison R; Jiang Y; Vander Hoorn S; Exeter D; Mhurchu CN; Dorey E Pediatr Exerc Sci; 2010 Aug; 22(3):392-407. PubMed ID: 20814035 [TBL] [Abstract][Full Text] [Related]
6. Miniature neurologgers for flying pigeons: multichannel EEG and action and field potentials in combination with GPS recording. Vyssotski AL; Serkov AN; Itskov PM; Dell'Omo G; Latanov AV; Wolfer DP; Lipp HP J Neurophysiol; 2006 Feb; 95(2):1263-73. PubMed ID: 16236777 [TBL] [Abstract][Full Text] [Related]
7. Combining global positioning system and accelerometer data to determine the locations of physical activity in children. Oreskovic NM; Blossom J; Field AE; Chiang SR; Winickoff JP; Kleinman RE Geospat Health; 2012 May; 6(2):263-72. PubMed ID: 22639128 [TBL] [Abstract][Full Text] [Related]
8. Schoolyard physical activity in 14-year-old adolescents assessed by mobile GPS and heart rate monitoring analysed by GIS. Fjørtoft I; Löfman O; Halvorsen Thorén K Scand J Public Health; 2010 Nov; 38(5 Suppl):28-37. PubMed ID: 21062837 [TBL] [Abstract][Full Text] [Related]
9. Challenges in using wearable GPS devices in low-income older adults: Can map-based interviews help with assessments of mobility? Schmidt T; Kerr J; Kestens Y; Schipperijn J Transl Behav Med; 2019 Jan; 9(1):99-109. PubMed ID: 29554353 [TBL] [Abstract][Full Text] [Related]
10. Wireless inertial measurement unit with GPS (WIMU-GPS)--wearable monitoring platform for ecological assessment of lifespace and mobility in aging and disease. Boissy P; Brière S; Hamel M; Jog M; Speechley M; Karelis A; Frank J; Vincent C; Edwards R; Duval C; Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5815-9. PubMed ID: 22255662 [TBL] [Abstract][Full Text] [Related]
11. Work group II: Using Geographic Information Systems for enhancing research relevant to policy on diet, physical activity, and weight. Matthews SA; Moudon AV; Daniel M Am J Prev Med; 2009 Apr; 36(4 Suppl):S171-6. PubMed ID: 19285210 [TBL] [Abstract][Full Text] [Related]
12. Using accelerometers and GPS units to identify the proportion of daily physical activity located in parks with playgrounds in New Zealand children. Quigg R; Gray A; Reeder AI; Holt A; Waters DL Prev Med; 2010; 50(5-6):235-40. PubMed ID: 20153361 [TBL] [Abstract][Full Text] [Related]
13. Ambulatory physical activity monitoring system. Makikawa M; Kurata S; Kawato M; Kobayashi H; Takahashi A; Tokue R Stud Health Technol Inform; 1998; 52 Pt 1():277-81. PubMed ID: 10384461 [TBL] [Abstract][Full Text] [Related]
14. A proposal to design a Location-based Mobile Cardiac Emergency System (LMCES). Keikhosrokiani P; Mustaffa N; Zakaria N; Sarwar MI Stud Health Technol Inform; 2012; 182():83-92. PubMed ID: 23138083 [TBL] [Abstract][Full Text] [Related]
15. Monitoring human health behaviour in one's living environment: a technological review. Lowe SA; Ólaighin G Med Eng Phys; 2014 Feb; 36(2):147-68. PubMed ID: 24388101 [TBL] [Abstract][Full Text] [Related]
16. Physical activity intensity can be accurately monitored by smartphone global positioning system 'app'. Gordon BA; Bruce L; Benson AC Eur J Sport Sci; 2016 Aug; 16(5):624-31. PubMed ID: 26505223 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of thetrackstick super GPS tracker for use in walking research. McMinn D; Rowe DA; Cuk I Res Q Exerc Sport; 2012 Mar; 83(1):108-13. PubMed ID: 22428418 [No Abstract] [Full Text] [Related]
18. Spatial Technologies in Obesity Research: Current Applications and Future Promise. Jia P; Xue H; Yin L; Stein A; Wang M; Wang Y Trends Endocrinol Metab; 2019 Mar; 30(3):211-223. PubMed ID: 30712979 [TBL] [Abstract][Full Text] [Related]
19. Design and test of a hybrid foot force sensing and GPS system for richer user mobility activity recognition. Zhang Z; Poslad S Sensors (Basel); 2013 Nov; 13(11):14918-53. PubMed ID: 24189333 [TBL] [Abstract][Full Text] [Related]
20. The physical environment and health-enhancing activity during the school commute: global positioning system, geographical information systems and accelerometry. McMinn D; Oreskovic NM; Aitkenhead MJ; Johnston DW; Murtagh S; Rowe DA Geospat Health; 2014 May; 8(2):569-72. PubMed ID: 24893034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]