These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 19237547)
1. Internal conductance under different light conditions along the plant profile of Ethiopian mustard (Brassica carinata A. Brown.). Monti A; Bezzi G; Venturi G J Exp Bot; 2009; 60(8):2341-50. PubMed ID: 19237547 [TBL] [Abstract][Full Text] [Related]
2. Seasonal time-course of gradients of photosynthetic capacity and mesophyll conductance to CO2 across a beech (Fagus sylvatica L.) canopy. Montpied P; Granier A; Dreyer E J Exp Bot; 2009; 60(8):2407-18. PubMed ID: 19457983 [TBL] [Abstract][Full Text] [Related]
3. The impact of blue light on leaf mesophyll conductance. Loreto F; Tsonev T; Centritto M J Exp Bot; 2009; 60(8):2283-90. PubMed ID: 19395388 [TBL] [Abstract][Full Text] [Related]
4. Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. Niinemets U; Díaz-Espejo A; Flexas J; Galmés J; Warren CR J Exp Bot; 2009; 60(8):2271-82. PubMed ID: 19305021 [TBL] [Abstract][Full Text] [Related]
5. Effects of internal conductance on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Yamori W; Noguchi K; Hanba YT; Terashima I Plant Cell Physiol; 2006 Aug; 47(8):1069-80. PubMed ID: 16816408 [TBL] [Abstract][Full Text] [Related]
6. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandierixV. rupestris). Flexas J; Barón M; Bota J; Ducruet JM; Gallé A; Galmés J; Jiménez M; Pou A; Ribas-Carbó M; Sajnani C; Tomàs M; Medrano H J Exp Bot; 2009; 60(8):2361-77. PubMed ID: 19351904 [TBL] [Abstract][Full Text] [Related]
7. The photosynthetic limitation posed by internal conductance to CO2 movement is increased by nutrient supply. Warren CR J Exp Bot; 2004 Oct; 55(406):2313-21. PubMed ID: 15310814 [TBL] [Abstract][Full Text] [Related]
8. Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Niinemets U; Valladares F Plant Biol (Stuttg); 2004 May; 6(3):254-68. PubMed ID: 15143434 [TBL] [Abstract][Full Text] [Related]
9. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. Niinemets U; Wright IJ; Evans JR J Exp Bot; 2009; 60(8):2433-49. PubMed ID: 19255061 [TBL] [Abstract][Full Text] [Related]
10. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. Li Y; Gao Y; Xu X; Shen Q; Guo S J Exp Bot; 2009; 60(8):2351-60. PubMed ID: 19395387 [TBL] [Abstract][Full Text] [Related]
11. Differential adaptation of two varieties of common bean to abiotic stress: II. Acclimation of photosynthesis. Wentworth M; Murchie EH; Gray JE; Villegas D; Pastenes C; Pinto M; Horton P J Exp Bot; 2006; 57(3):699-709. PubMed ID: 16415331 [TBL] [Abstract][Full Text] [Related]
12. Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. Hassiotou F; Ludwig M; Renton M; Veneklaas EJ; Evans JR J Exp Bot; 2009; 60(8):2303-14. PubMed ID: 19286919 [TBL] [Abstract][Full Text] [Related]
13. Construction costs, chemical composition and payback time of high- and low-irradiance leaves. Poorter H; Pepin S; Rijkers T; de Jong Y; Evans JR; Körner C J Exp Bot; 2006; 57(2):355-71. PubMed ID: 16303828 [TBL] [Abstract][Full Text] [Related]
14. The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation? Galle A; Florez-Sarasa I; Tomas M; Pou A; Medrano H; Ribas-Carbo M; Flexas J J Exp Bot; 2009; 60(8):2379-90. PubMed ID: 19321646 [TBL] [Abstract][Full Text] [Related]
15. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Trouwborst G; Oosterkamp J; Hogewoning SW; Harbinson J; van Ieperen W Physiol Plant; 2010 Mar; 138(3):289-300. PubMed ID: 20051030 [TBL] [Abstract][Full Text] [Related]
16. Photosynthesis and resource distribution through plant canopies. Niinemets U Plant Cell Environ; 2007 Sep; 30(9):1052-71. PubMed ID: 17661747 [TBL] [Abstract][Full Text] [Related]
17. Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. Kurepin LV; Emery RJ; Pharis RP; Reid DM J Exp Bot; 2007; 58(8):2145-57. PubMed ID: 17490995 [TBL] [Abstract][Full Text] [Related]
18. Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. Matsuda R; Ohashi-Kaneko K; Fujiwara K; Kurata K Plant Cell Physiol; 2008 Apr; 49(4):664-70. PubMed ID: 18349045 [TBL] [Abstract][Full Text] [Related]
19. A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal. Brodersen CR; Vogelmann TC; Williams WE; Gorton HL Plant Cell Environ; 2008 Jan; 31(1):159-64. PubMed ID: 18028265 [TBL] [Abstract][Full Text] [Related]
20. Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L. Wang Y; Noguchi K; Terashima I Plant Cell Environ; 2008 Sep; 31(9):1307-16. PubMed ID: 18537998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]