These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 19237765)

  • 41. The effect of water hyacinths for wastewater treatment under Cuban climatic conditions.
    Rodriguez C; Jenssen PD
    Water Sci Technol; 2005; 51(12):275-82. PubMed ID: 16114695
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pretreatment of synthetic dairy wastewater using the sophorolipid-producing yeast Candida bombicola.
    Daverey A; Pakshirajan K
    Appl Biochem Biotechnol; 2011 Mar; 163(6):720-8. PubMed ID: 20821070
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Start-up of an aerobic granular sequencing batch reactor for the treatment of winery wastewater.
    López-Palau S; Dosta J; Mata-Alvarez J
    Water Sci Technol; 2009; 60(4):1049-54. PubMed ID: 19700844
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrated anaerobic treatment of dairy industrial wastewater and sludge.
    Passeggi M; López I; Borzacconi L
    Water Sci Technol; 2009; 59(3):501-6. PubMed ID: 19214004
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of an improved anaerobic filter for municipal wastewater treatment.
    Bodkhe S
    Bioresour Technol; 2008 Jan; 99(1):222-6. PubMed ID: 17207998
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Restart of anaerobic filters treating low-strength wastewater.
    Manariotis ID; Grigoropoulos SG
    Bioresour Technol; 2008 Jun; 99(9):3579-89. PubMed ID: 17855084
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Treatment of molasses wastewater by acetogenic bacteria BP103 in sequencing batch reactor (SBR) system.
    Sirianuntapiboon S; Prasertsong K
    Bioresour Technol; 2008 Apr; 99(6):1806-15. PubMed ID: 17507213
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrasonic reduction of excess sludge from the activated sludge system.
    Zhang G; Zhang P; Yang J; Chen Y
    J Hazard Mater; 2007 Jul; 145(3):515-9. PubMed ID: 17412495
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphorus removal from wastewater by mineral apatite.
    Bellier N; Chazarenc F; Comeau Y
    Water Res; 2006 Aug; 40(15):2965-71. PubMed ID: 16828841
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry.
    González C; García PA; Muñoz R
    Water Sci Technol; 2009; 60(8):2145-52. PubMed ID: 19844061
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of biological wastewater treatment on the molecular weight distribution of soluble organic compounds and on the reduction of BOD, COD and P in pulp and paper mill effluent.
    Leiviskä T; Nurmesniemi H; Pöykiö R; Rämö J; Kuokkanen T; Pellinen J
    Water Res; 2008 Aug; 42(14):3952-60. PubMed ID: 18707750
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of an ecologically sustainable wastewater treatment system.
    Kumar L; Ranjan R; Sabumon PC
    Water Sci Technol; 2008; 58(1):7-12. PubMed ID: 18653930
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wastewater treatment with multilayer media of waste and natural indigenous materials.
    Rahman MA; Ahsan S; Kaneco S; Katsumata H; Suzuki T; Ohta K
    J Environ Manage; 2005 Jan; 74(2):107-10. PubMed ID: 15627464
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization of the treatment of piggery wastes in water hyacinth ponds.
    Costa RH; Zanotelli CT; Hoffmann DM; Belli Filho P; Perdomo CC; Rafikov M
    Water Sci Technol; 2003; 48(2):283-9. PubMed ID: 14510222
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anaerobic treatment of synthetic medium-strength wastewater using a multistage biofilm reactor.
    Ghaniyari-Benis S; Borja R; Monemian SA; Goodarzi V
    Bioresour Technol; 2009 Mar; 100(5):1740-5. PubMed ID: 19000944
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activity of sulphate reducing bacteria according to COD/SO4(2-) ratio of acrylonitrile wastewater containing high sulphate.
    Byun IG; Lee TH; Kim YO; Song SK; Park TJ
    Water Sci Technol; 2004; 49(5-6):229-35. PubMed ID: 15137428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes.
    Tezcan Un U; Koparal AS; Bakir Oğütveren U
    J Hazard Mater; 2009 May; 164(2-3):580-6. PubMed ID: 18819748
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biogas production from plant biomass used for phytoremediation of industrial wastes.
    Verma VK; Singh YP; Rai JP
    Bioresour Technol; 2007 May; 98(8):1664-9. PubMed ID: 16831546
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determination of dairy wastewater treatability by bio-trickling filter packed with lava rocks - case study PEGAH dairy factory.
    Mehrdadi N; Bidhendi GR; Shokouhi M
    Water Sci Technol; 2012; 65(8):1441-7. PubMed ID: 22466591
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Performance of nano- and nonnano-catalytic electrodes for decontaminating municipal wastewater.
    Chang JH; Yang TJ; Tung CH
    J Hazard Mater; 2009 Apr; 163(1):152-7. PubMed ID: 18657362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.