BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 19237919)

  • 21. Hemodynamic effects of different lung-protective ventilation strategies in closed-chest pigs with normal lungs.
    Roosens CD; Ama R; Leather HA; Segers P; Sorbara C; Wouters PF; Poelaert JI
    Crit Care Med; 2006 Dec; 34(12):2990-6. PubMed ID: 16971849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of auto-regulated inspiratory support during rebreathing and acute lung injury in pigs.
    Desmettre TJ; Chambrin MC; Mangalaboyi J; Pigot A; Chopin C
    Respir Care; 2005 Aug; 50(8):1050-61. PubMed ID: 16225710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pulmonary morphofunctional effects of mechanical ventilation with high inspiratory air flow.
    Garcia CS; Abreu SC; Soares RM; Prota LF; Figueira RC; Morales MM; Capelozzi VL; Zin WA; Rocco PR
    Crit Care Med; 2008 Jan; 36(1):232-9. PubMed ID: 18090363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The effects of endotracheal suction on gas exchange and respiratory mechanics in mechanically ventilated patients under pressure-controlled or volume-controlled ventilation].
    Liu XW; Liu Z
    Zhonghua Jie He He Hu Xi Za Zhi; 2007 Oct; 30(10):751-5. PubMed ID: 18218205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heliox does not affect gas exchange during high-frequency oscillatory ventilation if tidal volume is held constant.
    Katz AL; Gentile MA; Craig DM; Quick G; Cheifetz IM
    Crit Care Med; 2003 Jul; 31(7):2006-9. PubMed ID: 12847396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acute effects of combined high-frequency oscillation and tracheal gas insufflation in severe acute respiratory distress syndrome.
    Mentzelopoulos SD; Roussos C; Koutsoukou A; Sourlas S; Malachias S; Lachana A; Zakynthinos SG
    Crit Care Med; 2007 Jun; 35(6):1500-8. PubMed ID: 17440419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feasibility of very high-frequency ventilation in adults with acute respiratory distress syndrome.
    Fessler HE; Hager DN; Brower RG
    Crit Care Med; 2008 Apr; 36(4):1043-8. PubMed ID: 18379227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of imposed expiratory resistance in neonatal mechanical ventilation: a laboratory evaluation.
    DiBlasi RM; Salyer JW; Zignego JC; Redding GJ; Richardson CP
    Respir Care; 2008 Nov; 53(11):1450-60. PubMed ID: 18957147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficacy of continuous tracheal gas insufflation in spontaneously breathing canine with acute lung injury.
    Zhan Q; Wang C; Shang M; Tong Z; Weng X
    Chin Med J (Engl); 2001 Jun; 114(6):658-60. PubMed ID: 11780448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [High frequency oscillatory ventilation with perfluorocarbon in rabbits with acute lung injury].
    Chen X; Cui N; Geng R
    Zhonghua Yi Xue Za Zhi; 2001 Jan; 81(2):97-101. PubMed ID: 11798859
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Four methods of measuring tidal volume during high-frequency oscillatory ventilation.
    Hager DN; Fuld M; Kaczka DW; Fessler HE; Brower RG; Simon BA
    Crit Care Med; 2006 Mar; 34(3):751-7. PubMed ID: 16505661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High frequency oscillatory and conventional mechanical ventilation in experimental surfactant deficiency: a study using a new infant ventilator technique.
    Schulze A; Schaller P; Gehrhardt B; Mädler HJ; Dinger J; Gmyrek D; Winkler U; Nitzsche H; Mehler HJ
    Z Erkr Atmungsorgane; 1989; 172(3):272-81. PubMed ID: 2508336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Imposed work of breathing during ventilator failure.
    Austin PN; Campbell RS; Johannigman JA; Branson RD
    Respir Care; 2002 Jun; 47(6):667-74. PubMed ID: 12036436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calculation of intratracheal airway pressure in ventilated neonatal piglets with endotracheal tube leaks.
    Nikischin W; Herber-Jonat S; von Bismarck P; Lange M; Grabitz R
    Crit Care Med; 2007 May; 35(5):1383-9. PubMed ID: 17414085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of total resistive work of breathing in two generations of ventilators in an animal model.
    Heulitt MJ; Torres A; Anders M; Wilson SW; Carmack J
    Pediatr Pulmonol; 1996 Jul; 22(1):58-66. PubMed ID: 8856804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Patient-ventilator interaction during acute lung injury, and the role of spontaneous breathing: part 2: airway pressure release ventilation.
    Kallet RH
    Respir Care; 2011 Feb; 56(2):190-203; discussion 203-6. PubMed ID: 21333179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imposed work of breathing and methods of triggering a demand-flow, continuous positive airway pressure system.
    Banner MJ; Blanch PB; Kirby RR
    Crit Care Med; 1993 Feb; 21(2):183-90. PubMed ID: 8428467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of tidal volume demand on work of breathing during simulated lung-protective ventilation.
    Kallet RH; Alonso JA; Diaz M; Campbell AR; Mackersie RC; Katz JA
    Respir Care; 2002 Aug; 47(8):898-909. PubMed ID: 12162801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of dynamic mechanical properties of the respiratory system during high-frequency oscillatory ventilation*.
    Dellacà RL; Zannin E; Ventura ML; Sancini G; Pedotti A; Tagliabue P; Miserocchi G
    Crit Care Med; 2013 Nov; 41(11):2502-11. PubMed ID: 23760105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo physiologic comparison of two ventilators used for domiciliary ventilation in children with cystic fibrosis.
    Fauroux B; Pigeot J; Polkey MI; Isabey D; Clément A; Lofaso F
    Crit Care Med; 2001 Nov; 29(11):2097-105. PubMed ID: 11700403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.