These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19238287)

  • 1. Hadamard transform spectral microscopy for single cell imaging using organic and quantum dot fluorescent probes.
    Xu H; Peng J; Tang HW; Li Y; Wu QS; Zhang ZL; Zhou G; Chen C; Li Y
    Analyst; 2009 Mar; 134(3):504-11. PubMed ID: 19238287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The distribution analysis of the biomarkers on breast cancer tissues by Hadamard transform spectral microscopic imaging].
    Xu H; Chen C; Liu CM; Peng J; Li Y; Zhang ZL; Tang HW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3216-9. PubMed ID: 20210135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ spectral imaging of marker proteins in gastric cancer with near-infrared and visible quantum dots probes.
    He Y; Xu H; Chen C; Peng J; Tang H; Zhang Z; Li Y; Pang D
    Talanta; 2011 Jul; 85(1):136-41. PubMed ID: 21645682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the bioconjugation efficiency of different quantum dots as probes for immunostaining tumor-marker proteins.
    Xu H; Chen C; Peng J; Tang HW; Liu CM; He Y; Chen ZZ; Li Y; Zhang ZL; Pang DW
    Appl Spectrosc; 2010 Aug; 64(8):847-52. PubMed ID: 20719046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of cancer marker in tissues with Hadamard transform fluorescence spectral microscopic imaging.
    Xu H; Chen C; He Y; Tang HW; Zhang ZL; Li Y; Pang DW
    J Fluoresc; 2015 Mar; 25(2):397-402. PubMed ID: 25663197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells.
    Grecco HE; Lidke KA; Heintzmann R; Lidke DS; Spagnuolo C; Martinez OE; Jares-Erijman EA; Jovin TM
    Microsc Res Tech; 2004 Nov; 65(4-5):169-79. PubMed ID: 15630694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tests of a practical visible-NIR imaging Fourier transform spectrometer for biological and chemical fluorescence emission measurements.
    Li J; Chan RK; Wang X
    Opt Express; 2009 Nov; 17(23):21083-90. PubMed ID: 19997347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum dots light up pathology.
    Tholouli E; Sweeney E; Barrow E; Clay V; Hoyland JA; Byers RJ
    J Pathol; 2008 Nov; 216(3):275-85. PubMed ID: 18814189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Quantum dots and their applications in cancer research].
    Chen LD; Li Y; Yuan HY; Pang DW
    Ai Zheng; 2006 May; 25(5):651-6. PubMed ID: 16687092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiconductor quantum dots for biosensing and in vivo imaging.
    Xing Y; Xia Z; Rao J
    IEEE Trans Nanobioscience; 2009 Mar; 8(1):4-12. PubMed ID: 19304495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confocal laser scanning microscopy of whole mouse ovaries: excellent morphology, apoptosis detection, and spectroscopy.
    Zucker RM; Jeffay SC
    Cytometry A; 2006 Aug; 69(8):930-9. PubMed ID: 16969804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.
    Wu X; Liu H; Liu J; Haley KN; Treadway JA; Larson JP; Ge N; Peale F; Bruchez MP
    Nat Biotechnol; 2003 Jan; 21(1):41-6. PubMed ID: 12459735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling.
    Jiang D; Liu C; Wang L; Jiang W
    Anal Chim Acta; 2010 Mar; 662(2):170-6. PubMed ID: 20171316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nondestructive quantum dot-based intracellular serotonin imaging in intact cells.
    Ki HA; Naoghare PK; Oh BK; Choi JW; Song JM
    Anal Biochem; 2009 May; 388(1):23-7. PubMed ID: 19454224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging the lateral diffusion of membrane molecules with quantum dots.
    Bannai H; Lévi S; Schweizer C; Dahan M; Triller A
    Nat Protoc; 2006; 1(6):2628-34. PubMed ID: 17406518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentials and pitfalls of fluorescent quantum dots for biological imaging.
    Jaiswal JK; Simon SM
    Trends Cell Biol; 2004 Sep; 14(9):497-504. PubMed ID: 15350978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum dot: magic nanoparticle for imaging, detection and targeting.
    Ghasemi Y; Peymani P; Afifi S
    Acta Biomed; 2009 Aug; 80(2):156-65. PubMed ID: 19848055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hyperspectral fluorescence system for 3D in vivo optical imaging.
    Zavattini G; Vecchi S; Mitchell G; Weisser U; Leahy RM; Pichler BJ; Smith DJ; Cherry SR
    Phys Med Biol; 2006 Apr; 51(8):2029-43. PubMed ID: 16585843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation.
    Chen G; Chen J; Zhuo S; Xiong S; Zeng H; Jiang X; Chen R; Xie S
    Br J Dermatol; 2009 Jul; 161(1):48-55. PubMed ID: 19309369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.