BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19238287)

  • 1. Hadamard transform spectral microscopy for single cell imaging using organic and quantum dot fluorescent probes.
    Xu H; Peng J; Tang HW; Li Y; Wu QS; Zhang ZL; Zhou G; Chen C; Li Y
    Analyst; 2009 Mar; 134(3):504-11. PubMed ID: 19238287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The distribution analysis of the biomarkers on breast cancer tissues by Hadamard transform spectral microscopic imaging].
    Xu H; Chen C; Liu CM; Peng J; Li Y; Zhang ZL; Tang HW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3216-9. PubMed ID: 20210135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ spectral imaging of marker proteins in gastric cancer with near-infrared and visible quantum dots probes.
    He Y; Xu H; Chen C; Peng J; Tang H; Zhang Z; Li Y; Pang D
    Talanta; 2011 Jul; 85(1):136-41. PubMed ID: 21645682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the bioconjugation efficiency of different quantum dots as probes for immunostaining tumor-marker proteins.
    Xu H; Chen C; Peng J; Tang HW; Liu CM; He Y; Chen ZZ; Li Y; Zhang ZL; Pang DW
    Appl Spectrosc; 2010 Aug; 64(8):847-52. PubMed ID: 20719046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of cancer marker in tissues with Hadamard transform fluorescence spectral microscopic imaging.
    Xu H; Chen C; He Y; Tang HW; Zhang ZL; Li Y; Pang DW
    J Fluoresc; 2015 Mar; 25(2):397-402. PubMed ID: 25663197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells.
    Grecco HE; Lidke KA; Heintzmann R; Lidke DS; Spagnuolo C; Martinez OE; Jares-Erijman EA; Jovin TM
    Microsc Res Tech; 2004 Nov; 65(4-5):169-79. PubMed ID: 15630694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tests of a practical visible-NIR imaging Fourier transform spectrometer for biological and chemical fluorescence emission measurements.
    Li J; Chan RK; Wang X
    Opt Express; 2009 Nov; 17(23):21083-90. PubMed ID: 19997347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum dots light up pathology.
    Tholouli E; Sweeney E; Barrow E; Clay V; Hoyland JA; Byers RJ
    J Pathol; 2008 Nov; 216(3):275-85. PubMed ID: 18814189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Quantum dots and their applications in cancer research].
    Chen LD; Li Y; Yuan HY; Pang DW
    Ai Zheng; 2006 May; 25(5):651-6. PubMed ID: 16687092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiconductor quantum dots for biosensing and in vivo imaging.
    Xing Y; Xia Z; Rao J
    IEEE Trans Nanobioscience; 2009 Mar; 8(1):4-12. PubMed ID: 19304495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confocal laser scanning microscopy of whole mouse ovaries: excellent morphology, apoptosis detection, and spectroscopy.
    Zucker RM; Jeffay SC
    Cytometry A; 2006 Aug; 69(8):930-9. PubMed ID: 16969804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.
    Wu X; Liu H; Liu J; Haley KN; Treadway JA; Larson JP; Ge N; Peale F; Bruchez MP
    Nat Biotechnol; 2003 Jan; 21(1):41-6. PubMed ID: 12459735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling.
    Jiang D; Liu C; Wang L; Jiang W
    Anal Chim Acta; 2010 Mar; 662(2):170-6. PubMed ID: 20171316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nondestructive quantum dot-based intracellular serotonin imaging in intact cells.
    Ki HA; Naoghare PK; Oh BK; Choi JW; Song JM
    Anal Biochem; 2009 May; 388(1):23-7. PubMed ID: 19454224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging the lateral diffusion of membrane molecules with quantum dots.
    Bannai H; Lévi S; Schweizer C; Dahan M; Triller A
    Nat Protoc; 2006; 1(6):2628-34. PubMed ID: 17406518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentials and pitfalls of fluorescent quantum dots for biological imaging.
    Jaiswal JK; Simon SM
    Trends Cell Biol; 2004 Sep; 14(9):497-504. PubMed ID: 15350978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum dot: magic nanoparticle for imaging, detection and targeting.
    Ghasemi Y; Peymani P; Afifi S
    Acta Biomed; 2009 Aug; 80(2):156-65. PubMed ID: 19848055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hyperspectral fluorescence system for 3D in vivo optical imaging.
    Zavattini G; Vecchi S; Mitchell G; Weisser U; Leahy RM; Pichler BJ; Smith DJ; Cherry SR
    Phys Med Biol; 2006 Apr; 51(8):2029-43. PubMed ID: 16585843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation.
    Chen G; Chen J; Zhuo S; Xiong S; Zeng H; Jiang X; Chen R; Xie S
    Br J Dermatol; 2009 Jul; 161(1):48-55. PubMed ID: 19309369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.