These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19238294)

  • 1. Discrimination of bacteria using pyrolysis-gas chromatography-differential mobility spectrometry (Py-GC-DMS) and chemometrics.
    Cheung W; Xu Y; Thomas CL; Goodacre R
    Analyst; 2009 Mar; 134(3):557-63. PubMed ID: 19238294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfabricated differential mobility spectrometry with pyrolysis gas chromatography for chemical characterization of bacteria.
    Schmidt H; Tadjimukhamedov F; Mohrenz IV; Smith GB; Eiceman GA
    Anal Chem; 2004 Sep; 76(17):5208-17. PubMed ID: 15373463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of bacterial strains with pyrolysis-gas chromatography/differential mobility spectrometry.
    Prasad S; Schmidt H; Lampen P; Wang M; Güth R; Rao JV; Smith GB; Eiceman GA
    Analyst; 2006 Nov; 131(11):1216-25. PubMed ID: 17066190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constituents with independence from growth temperature for bacteria using pyrolysis-gas chromatography/differential mobility spectrometry with analysis of variance and principal component analysis.
    Prasad S; Pierce KM; Schmidt H; Rao JV; Güth R; Synovec RE; Smith GB; Eiceman GA
    Analyst; 2008 Jun; 133(6):760-7. PubMed ID: 18493677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of bacteria by pyrolysis gas chromatography-differential mobility spectrometry and isolation of chemical components with a dependence on growth temperature.
    Prasad S; Pierce KM; Schmidt H; Rao JV; Güth R; Bader S; Synovec RE; Smith GB; Eiceman GA
    Analyst; 2007 Oct; 132(10):1031-9. PubMed ID: 17893807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of mass spectrometry identified bacterial biomarkers from a fielded pyrolysis-gas chromatography-ion mobility spectrometry biodetector with the microbiological gram stain classification scheme.
    Snyder AP; Dworzanski JP; Tripathi A; Maswadeh WM; Wick CH
    Anal Chem; 2004 Nov; 76(21):6492-9. PubMed ID: 15516146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis GC-MS-based metabolite fingerprinting for quality evaluation of commercial Angelica acutiloba roots.
    Tianniam S; Bamba T; Fukusaki E
    J Biosci Bioeng; 2010 Jan; 109(1):89-93. PubMed ID: 20129089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of high-speed gas chromatography-mass spectrometry data by principal component analysis coupled with piecewise alignment and feature selection.
    Watson NE; Vanwingerden MM; Pierce KM; Wright BW; Synovec RE
    J Chromatogr A; 2006 Sep; 1129(1):111-8. PubMed ID: 16860329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris.
    Lu Y; Harrington PB
    Anal Chem; 2007 Sep; 79(17):6752-9. PubMed ID: 17683164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of jet fuels by fuzzy rule-building expert systems applied to three-way data by fast gas chromatography--fast scanning quadrupole ion trap mass spectrometry.
    Sun X; Zimmermann CM; Jackson GP; Bunker CE; Harrington PB
    Talanta; 2011 Jan; 83(4):1260-8. PubMed ID: 21215862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemometric analysis of multiple species of Bacillus bacterial endospores using infrared spectroscopy: discrimination to the strain level.
    Forrester JB; Valentine NB; Su YF; Johnson TJ
    Anal Chim Acta; 2009 Sep; 651(1):24-30. PubMed ID: 19733730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacillus spore classification via surface-enhanced Raman spectroscopy and principal component analysis.
    Guicheteau J; Argue L; Emge D; Hyre A; Jacobson M; Christesen S
    Appl Spectrosc; 2008 Mar; 62(3):267-72. PubMed ID: 18339232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genus-wide Bacillus species identification through proper artificial neural network experiments on fatty acid profiles.
    Slabbinck B; De Baets B; Dawyndt P; De Vos P
    Antonie Van Leeuwenhoek; 2008 Aug; 94(2):187-98. PubMed ID: 18322819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion mobility spectrometry detection for gas chromatography.
    Kanu AB; Hill HH
    J Chromatogr A; 2008 Jan; 1177(1):12-27. PubMed ID: 18067900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of bacteria by rapid sensing their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS.
    Ratiu IA; Bocos-Bintintan V; Patrut A; Moll VH; Turner M; Thomas CLP
    Anal Chim Acta; 2017 Aug; 982():209-217. PubMed ID: 28734362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The discrimination of automotive clear coats by pyrolysis-gas chromatography/mass spectrometry and comparison of samples by a chromatogram library software.
    Plage B; Berg AD; Luhn S
    Forensic Sci Int; 2008 May; 177(2-3):146-52. PubMed ID: 18182262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid separation and quantitative analysis of peptides using a new nanoelectrospray- differential mobility spectrometer-mass spectrometer system.
    Levin DS; Miller RA; Nazarov EG; Vouros P
    Anal Chem; 2006 Aug; 78(15):5443-52. PubMed ID: 16878881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models.
    Wiklund S; Johansson E; Sjöström L; Mellerowicz EJ; Edlund U; Shockcor JP; Gottfries J; Moritz T; Trygg J
    Anal Chem; 2008 Jan; 80(1):115-22. PubMed ID: 18027910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas chromatography/flame ionisation detection mass spectrometry for the detection of endogenous urine metabolites for metabonomic studies and its use as a complementary tool to nuclear magnetic resonance spectroscopy.
    Fancy SA; Beckonert O; Darbon G; Yabsley W; Walley R; Baker D; Perkins GL; Pullen FS; Rumpel K
    Rapid Commun Mass Spectrom; 2006; 20(15):2271-80. PubMed ID: 16810707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of diffuse-reflectance absorbance and attenuated total reflectance FT-IR for the discrimination of bacteria.
    Winder CL; Goodacre R
    Analyst; 2004 Nov; 129(11):1118-22. PubMed ID: 15508042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.